Summary
###########################################################################
File: lu.icn
Subject: Procedures for LU manipulation
Author: Ralph E. Griswold
Date: August 14, 1996
###########################################################################
This file is in the public domain.
###########################################################################
lu_decomp(M, I) performs LU decomposition on the square matrix M
using the vector I. Both M and I are modified in the process. The
value returned is +1 or -1 depending on whether the number of row
interchanges is even or odd. lu_decomp() is used in combination with
lu_back_sub() to solve linear equations or invert matrices.
lu_decomp() fails if the matrix is singular.
lu_back_sub(M, I, B) solves the set of linear equations M x X = B. M
is the matrix as modified by lu_decomp(). I is the index vector
produced by lu_decomp(). B is the right-hand side vector and return
with the solution vector. M and I are not modified by lu_back_sub()
and can be used in successive calls of lu_back_sub() with different
Bs.
###########################################################################
Acknowledgement: These procedures are based on algorithms given in
"Numerical Recipes; The Art of Scientific Computing"; William H. Press,
Brian P. Flannery, Saul A. Teukolsky. and William T. Vetterling;
Cambridge University Press, 1986.
###########################################################################
Procedures:
lu_back_sub, lu_decomp
This file is part of the (main) package.
Source code.
lu_back_sub(M, I, B)
lu_decomp(M, I)
This page produced by UniDoc on 2021/04/15 @ 23:59:54.