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Preface

This book is a compendium of documents that describe the implementation of the Icon and Unicon
programming languages, an implementation that started with Icon version 3 on a PDP-11 sometime
near the year 1980. The dynamic nature of the code pretty well guarantees that the documentation
can never be complete and current.

Organization of This Book

This book consists of four parts. The first part, Chapters 1-12, present the core of the implementa-
tion, focusing on the virtual machine interpreter and runtime system. This material was originally
published as the Implementation of the Icon Programming Language, by Ralph and Madge T. Gris-
wold; at that time it documented Icon Version 6. Many of the details in this book became obsolete
with the rewriting of the runtime system for Icon Version 8. This work strives to preserve the
authors’ style and intent, while updating it to document Icon Version 9.5 and Unicon Version 12.
Blue-colored text indicates when necessary Unicon issues and differences, so that Part I remains
useful to people who prefer to use the Icon implementation, not just those working with Unicon.

Part II, in Chapters 13-19, describes the optimizing compiler, iconc, and the structuring of
the runtime system to support it. This work is the brainchild of Ken Walker, whose dissertation
is presented here, along with his technical report describing the runtime language RTL and its
translator, rtt. Ken’s compiler was enhanced by Anthony Jones’ B.S. Honors thesis (Chapter 24).

Part III describes the implementation of Unicon, including chapters on the Unicon translator,
the networking and POSIX system interface, the database facilities, 2D and 3D graphics, and con-
currency. Part III is capped by Mike Wilder’s chapters on adapting the optimizing compiler from
Part II and the Unicon translator to work together, and a technique that solves the problem of mem-
ory requirements for type inferencing, enabling the optimizing compiler to handle the large number
of types used in complex object-oriented programs.

Part IV consists of essential reference material presented in several Appendixes.

xvii
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Compendium Introduction

The implementation of the Icon programming language is venerable. The implementation doc-
umentation traditionally revolved around the virtual machine and its runtime system; other parts
of the implementation were documented in scattered technical reports or not at all, other than the
source code. This volume changes all that, by bringing all the implementation documents together
in a single volume.

Icon’s public-domain implementation is fairly efficient; for example at one point Keith Wa-
clena of the University of Chicago documented a factor of 4 or more speed advantage of Icon versus
Python on multiple benchmarks, and that was for the Icon virtual machine interpreter; the Icon opti-
mizing compiler adds another factor of 2-5 or more in faster execution speed. The design decisions
that achieve Icon’s very-high level language features (such as generators and goal-directed evalu-
ation) with acceptable performance make for an interesting study. This book is intended for those
wanting to learn the implementation in order to add features, improve performance, learn about
compilers in general, or glean ideas for their own independent programming language efforts.

Icon traditionally consisted of a virtual machine translator, a linker, and a virtual machine inter-
preter. The translator and linker were merged long ago, but other tools have been added. The big
added components are the optimizing compiler written by Ken Walker, and the Unicon translator
written by Clint Jeffery. These additions are now a large part of the story. In the future you might
hope to see merger of components, and gradual replacement of C-based components with ones
written in Unicon.

How Many Compilers?

The figure below shows two symmetrically-organized sets of tools. The tools on the left are the
compilers end-users employ to translate Icon or Unicon into executable machine code, while the
tools on the right show how the underlying run-time system needed in order to execute those pro-
grams is built. Of the six rectangles, four are compilers that perform distinct tasks specific to this
programming language family. The front-end translation tool, named unicon, is a preprocessor
that translates Unicon code into Icon code. Its primary functions are to translate object-orientation
(classes, single and multiple inheritance, and packages) down to underlying imperative constructs.
Unicon is written in Unicon. Icont and iconc compile Icon code down to virtual machine and C
code, respectively. They share a few common front-end components, but are largely independent.
Iconx is the name of the Icon (and Unicon) virtual machine, which mostly consists of a large col-
lection of complex high-level data structure and I/O facilities which are built-in to these languages.
Most of the source code for iconx is also used in rt.a, the runtime library that is linked to Icon
programs compiled with iconc.
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Chapter 1

Introduction

PERSPECTIVE: The implementation of complex software systems is a fascinating subject — and
an important one. Its theoretical and practical aspects occupy the attention and energy of many
persons, and it consumes vast amounts of computational resources. In general terms, it is a broad
subject ranging from operating systems to programming languages to data-base systems to real-
time control systems, and so on.

Past work in these areas has resulted in an increasingly better understanding of implementation
techniques, more sophisticated and efficient systems, and tools for automating various aspects of
software production. Despite these advances, the implementation of complex software systems
remains challenging and exciting. The problems are difficult, and every advance in the state of the
art brings new and more difficult problems within reach.

Part I of this book addresses a very small portion of the problem of implementing complex
software systems—the implementation of a very high-level programming language that is oriented
toward the manipulation of structures and strings of characters.

In a narrow sense, this book describes an implementation of a specific programming language,
Icon. In a broader sense, it deals with a language-design philosophy, an approach to implementa-
tion, and techniques that apply to the implementation of many programming languages as well as
related types of software systems.

The focus of this book is the implementation of programming language features that are at a
high conceptual level—features that are easy for human beings to use as opposed to features that
fit comfortably on conventional computer architectures. The orientation of the implementation is
generality and flexibility, rather than maximum efficiency of execution. The problem domain is
strings and structures rather than numbers. It is these aspects that set the implementation of Icon
apart from more conventional programming-language implementations.

5
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1.1 Implementing Programming Languages

In conventional programming languages, most of the operations that are performed when a program
is executed can be determined, statically, by examining the text of the program. In addition, the
operations of most programming languages have a fairly close correspondence to the architectural
characteristics of the computers on which they are implemented. When these conditions are met,
source-code constructs can be mapped directly into machine instructions for the computer on which
they are to be executed. The term compilation is used for this translation process, and most persons
think of the implementation of a programming language in terms of a compiler.

Writing a compiler is a complex and difficult task that requires specialized training, and the
subject of compilation has been studied extensively (Waite and Goos, 1984; Aho, Lam, Sethi and
Ullman 2006). Most of the issues of data representation and code generation are comparatively
well understood, and there are now many tools for automating portions of the compiler-writing
task (Lesk 1975, Johnson 1975).

In addition to the compiler proper, an implementation of a programming language usually in-
cludes a run-time component that contains subroutines for performing computations that are too
complex to compile in-line, such as input, output, and mathematical functions.

Some programming languages have features whose meanings cannot be determined statically
from the text of a source-language program, but which may change during program execution. Such
features include changes in the meaning of functions during execution, the creation of new data
types at run time, and self-modifying programs. Some programming languages also have features,
such as pattern matching, that do not have correspondences in the architecture of conventional
computers. In such cases, a compiler cannot translate the source program directly into executable
code. Very high-level operations, such as pattern matching, and features like automatic storage
management significantly increase the importance and complexity of the run-time system. For
languages with these characteristics--languages such as APL, LISP, SNOBOL4, SETL, Prolog,
and Icon-much of the substance of the implementation is in the run-time system rather than in
translation done by a compiler. While compiler writing is relatively well understood, run-time
systems for most programming languages with dynamic features and very high-level operations
are not.

Programming languages with dynamic aspects and novel features are likely to become more
important rather than less important. Different problems benefit from different linguistic mecha-
nisms. New applications place different values on speed of execution, memory requirements, quick
solutions, programmer time and talent, and so forth. For these reasons, programming languages
continue to proliferate. New programming languages, by their nature, introduce new features.

All of this creates difficulties for the implementer. Less of the effort involved in implementa-
tions for new languages lies in the comparatively familiar domain of compilation and more lies in
new and unexplored areas, such as pattern matching and novel expression-evaluation mechanisms.

The programming languages that are the most challenging to implement are also those that
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differ most from each other. Nevertheless, there are underlying principles and techniques that are
generally applicable, and existing implementations contain many ideas that can be used or extended
in new implementations.

1.2 The Background for Icon

Before describing the Icon programming language and its implementation, some historical context
is needed, since both the language and its implementation are strongly influenced by earlier work.

Icon has its roots in a series of programming languages that bear the name SNOBOL. The first
SNOBOL language was conceived and implemented in the early 1960s at Bell Telephone Labo-
ratories in response to the need for a programming tool for manipulating strings of characters at a
high conceptual level (Farber, Griswold, and Polonsky 1964). It emphasized ease of programming
at the expense of efficiency of execution; the programmer was considered to be a more valuable
resource than the computer.

This rather primitive language proved to be popular, and it was followed by successively more
sophisticated languages: SNOBOL2, SNOBOL3 (Farber, Griswold, and Polonsky 1966), and fi-
nally SNOBOL4 (Griswold, Poage, and Polonsky 1971). Throughout the development of these
languages, the design emphasis was on ease of programming rather than on ease of implementation
(Griswold 1981). Potentially valuable features were not discarded because they might be ineffi-
cient or difficult to implement. The aggressive pursuit of this philosophy led to unusual language
features and to challenging implementation problems.

SNOBOL4 still is in wide use. Considering its early origins, some of its facilities are remark-
ably advanced. It features a pattern-matching facility with backtracking control structures that
effectively constitutes a sublanguage. SNOBOL4 also has a variety of data structures, including ta-
bles with associative lookup. Functions and operators can be defined and redefined during program
execution. Identifiers can be created at run-time, and a program can even modify itself by means
of run-time compilation.

Needless to say, SNOBOL4 is a difficult language to implement, and most of the conventional
compilation techniques have little applicability to it. Its initial implementation was, nonetheless,
sufficiently successful to make SNOBOL4 widely available on machines ranging from large main-
frames to personal computers (Griswold 1972). Subsequent implementations introduced a variety
of clever techniques and fast, compact implementations (Santos 1971; Gimpel 1972a; Dewar and
McCann 1977). The lesson here is that the design of programming languages should not be overly
inhibited by perceived implementation problems, since new implementation techniques often can
be devised to solve such problems effectively and efficiently.

It is worth noting that the original implementation of SNOBOL4 was carried out concomitantly
with language design. The implementation was sufficiently flexible to serve as a research tool in
which experimental language features could be incorporated easily and tested before they were
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given a permanent place in the language.
Work on the SNOBOL languages continued at the University of Arizona in the early 1970s. In

1975, a new language, called SL5 ("SNOBOL Language 5"), was developed to allow experimenta-
tion with a wider variety of programming-language constructs, especially a sophisticated procedure
mechanism (Griswold and Hanson, 1977; Hanson and Griswold 1978). SL5 extended earlier work
in pattern matching, but pattern matching remained essentially a sublanguage with its own control
structures, separate from the rest of the language.

The inspiration for Icon came in 1976 with a realization that the control structures that were so
useful in pattern matching could be integrated with conventional computational control structures
to yield a more coherent and powerful programming language.

The first implementation of Icon (Griswold and Hanson 1979) was written in Ratfor, a pre-
processor for Fortran that supports structured programming features (Kernighan 1975). Portabil-
ity was a central concern in this implementation. The implementation of Icon described in this
book is a successor to that first implementation. It borrows much from earlier implementations of
SNOBOL4, SL5, and the Ratfor implementation of Icon. As such, it is a distillation and refinement
of implementation techniques that have been developed over a period of more than twenty years.



Chapter 2

Icon Language Overview

PERSPECTIVE: The implementer of a programming language needs a considerably different un-
derstanding of the language from the persons who are going to use it. An implementer must have
a deep understanding of the relationships that exist among various aspects of the language and a
precise knowledge of what each operation means. Special cases and details often are of particular
importance to the implementer. Users of a language, on the other hand, must know how to use
features to accomplish desired results. They often can get by with a superficial knowledge of the
language, and they often can use it effectively even if some aspects of the language are misunder-
stood. Users can ignore parts of the language that they do not need. Idiosyncrasies that plague the
implementer may never be encountered by users. Conversely, a detail the implementer overlooks
may bedevil users. Furthermore, the implementer may also need to anticipate ways in which users
may apply some language features in inefficient and inappropriate ways.

Part I of this book is about the implementation of Version 6 (discussion partially updated to
Version 9) of Icon. The description that follows concentrates on aspects of the language that are
needed to understand its implementation. Where there are several similar operations or where the
operations are similar to those in well-known programming languages, only representative cases
or highlights are given. A complete description of Icon for the user is contained in Griswold and
Griswold (1997).

Icon is an unusual programming language, and its unusual features are what make its imple-
mentation challenging and interesting. The interesting features are semantic, not syntactic; they are
part of what the language can do, not part of its appearance. Syntactic matters and the way they
are handled in the implementation are of little interest here. The description that follows indicates
syntax mostly by example.

This chapter is divided into two major parts. The first part describes the essential aspects of
Icon. The second part discusses those aspects of Icon that present the most difficult implementation
problems and that affect the nature of the implementation in the most significant ways.

9
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2.1 The Icon Programming Language

Icon is conventional in many respects. It is an imperative, procedural language with variables,
operations, functions, and conventional data types. Its novel aspects lie in its emphasis on the ma-
nipulation of strings and structures and in its expression-evaluation mechanism. While much of the
execution of an Icon program has an imperative flavor, there also are aspects of logic programming.

There are no type declarations in Icon. Instead, variables can have any type of value. Structures
may be heterogeneous, with different elements having values of different types. Type checking is
performed during program execution, and automatic type conversion is provided. Several opera-
tions are polymorphic, performing different operations depending on the types of their arguments.

Strings and structures are created during program execution, instead of being declared and
allocated during compilation. Structures have pointer semantics; a structure value is a pointer to an
object. Storage management is automatic. Memory is allocated as required, and garbage collection
is performed when necessary. Except for the practical considerations of computer architecture and
the amount of available memory, there are no limitations on the sizes of objects.

An Icon program consists of a series of declarations for procedures, records, and global iden-
tifiers. Icon has no block structure. Scoping is static: identifiers either are global or are local to
procedures.

Icon is an expression-based language with reserved-word syntax. It resembles C in appearance,
for example (Kernighan and Ritchie 1978).

2.1.1 Data Types

Icon has many types of data — including several that are not found in most programming languages.
In addition to the usual integers and real (floating-point) numbers, there are strings of characters
and sets of characters (csets). There is no character data type, and strings of characters are data
objects in their own right, not arrays of characters.

There are four structure data types that comprise aggregates of values: lists, sets, tables, and
records. Lists provide positional access (like vectors), but they also can be manipulated like stacks
and queues. Sets are unordered collections of values on which the usual set operations can be
performed. Tables can be subscripted with any kind of value and provide an associative-access
mechanism. Records are aggregates of values that can be referenced by name. Record types also
add to the built-in type repertoire of Icon.

The null value serves a special purpose; all variables have the null value initially. The null
value is illegal in most computational contexts, but it serves to indicate default values in a number
of situations. The keyword &null produces the null value.

A source-language file is a data value that provides an interface between the program and a data
file in the environment in which the program executes.

Procedures also are data values — "first-class data objects" in LISP parlance. Procedures can be
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assigned to variables, transmitted to and returned from functions, and so forth. There is no method
for creating procedures during program execution, however.

Finally, there is a co-expression data type. Co-expressions are the expression-level analog of
coroutines. The importance of co-expressions is derived from Icon’s expression-evaluation mecha-
nism.

Icon has various operations on different types of data. Some operations are polymorphic and
accept arguments of different types. For example, type(x) produces a string corresponding to the
type of x. Similarly, copy(x) produces a copy of x, regardless of its type. Other operations only
apply to certain types. An example is:

*x

which produces the size of x, where the value of x may be a string, a structure, and so on. Another
example is ?x, which produces a randomly selected integer between 1 and x, if x is an integer, but
a randomly selected one-character substring of x if x is a string, and so on. In other cases, different
operations for similar kinds of computations are syntactically distinguished. For example,

i = j

compares the numeric values of i and j, while

s1 == s2

compares the string values of s1 and s2. There is also a general comparison operation that deter-
mines whether any two objects are the same:

x1 === x2

As mentioned previously, any kind of value can be assigned to any variable. For example, x
might have an integer value at one time and a string value at another:

x := 3
...
x := "hello"

Type checking is performed during program execution. For example, in

i := x + 1

the value of x is checked to be sure that it is numeric. If it is not numeric, an attempt is made to con-
vert it to a numeric type. If the conversion cannot be performed, program execution is terminated
with an error message.

Various conversions are supported. For example, a number always can be converted to a string.
Thus,

write(*s)

automatically converts the integer returned by *s to a string for the purpose of output.
There also are explicit type-conversion functions. For example,
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s1 := string(*s2)
assigns to s1 a string corresponding to the size of s2.

A string can be converted to a number if it has the syntax of a number. Thus,
i := i + "20"

produces the same result as
i := i + 20

Augmented assignments are provided for binary operations such as the previous one, where as-
signment is made to the same variable that appears as the left argument of the operation. Therefore,
the previous expression can be written more concisely as

i +:= 20
Icon also has the concept of a numeric type, which can be either an integer or a real (floating-

point) number.

2.1.2 Expression Evaluation

In most programming languages — Algol, Pascal, PL/I, and C, for example — the evaluation of
an expression always produces exactly one result. In Icon, the evaluation of an expression may
produce a single result, it may produce no result at all, or it may produce a sequence of results.

Success and Failure. Conventional operations in Icon produce one result, as they do in most
programming languages. For example,

i + j
produces a single result, the sum of the values of i and j. However, a comparison operation such as

i > j
produces a result (the value of j) if the value of i is greater than the value of j but does not produce
a result if the value of i is not greater than j.

An expression that does not produce a result is said to fail, while an expression that produces
a result is said to succeed. Success and failure are used in several control structures to control
program flow. For example,

if i > j then write(i) else write(j)
writes the maximum of i and j. Note that comparison operations do not produce Boolean values
and that Boolean values are not used to drive control structures. Indeed, Icon has no Boolean type.

Generally speaking, an operation that cannot perform a computation does not produce a result,
and hence it fails. For example, type-conversion functions fail if the conversion cannot be per-
formed. An example is numeric(x), which converts x to a numeric value if possible, but fails if the
conversion cannot be performed. Failure of an expression to produce a result does not indicate an
error. Instead, failure indicates that a result does not exist. An example is provided by the function
find(s1, s2), which produces the position of s1 as a substring of s2 but fails if s1 does not occur in
s2. For example,
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find("it", "They sit like bumps on a log.")

produces the value 7 (positions in strings are counted starting at 1). However,

find("at", "They sit like bumps on a log.")

does not produce a result. Similarly, read(f) produces the next line from the file f but fails when the
end of the file is reached.

Failure provides a natural way to control loops. For example,

while line := read(f) do
write(line)

writes the lines from the file f until an end of file causes read to fail, which terminates the loop.
Another use of success and failure is illustrated by the operation

\expr

which fails if expr is null-valued but produces the result of expr otherwise. Since variables have
the null value initially, this operation may be used to determine whether a value has been assigned
to an identifier, as in

if \x then write(x) else write("x is null")

If an expression that is enclosed in another expression does not produce a result, there is no
value for the enclosing expression, it cannot perform a computation, and it also produces no result.
For example. In

write(find("at", "They sit like bumps on a log."))

the evaluation of find fails, there is no argument for write, and no value is written.
Similarly, in

i := find("at", "They sit like bumps on a log.")

the assignment is not performed and the value of i is not changed.
This “inheritance” of failure allows computations to be expressed concisely. For example,

while write(read(f))

writes the lines from the file f just as the previous loop (the do clause in while-do is optional).
The expression

not expr

inverts success and failure. It fails if expr succeeds, but it succeeds, producing the null value, if
expr fails.

Some expressions produce variables, while others only produce values. For example,

i + j

produces a value, while

i := 10
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produces its left-argument variable. The term result is used to refer to a value or a variable. The
term outcome is used to refer to the consequences of evaluating an expression — either its result or
failure.

Loops. There are several looping control structures in Icon in addition to while-do. For exam-
ple,

until expr1 do expr2
evaluates expr2 repeatedly until expr1 succeeds. The control structure

repeat expr
simply evaluates expr repeatedly, regardless of whether it succeeds or fails.

A loop itself produces no result if it completes, and hence it fails if used in a conditional context.
That is, when

while expr1 do expr2
terminates, its outcome is failure. This failure ordinarily goes unnoticed, since loops usually are
not used as arguments of other expressions.

The control structure
break expr

causes the immediate termination of the evaluation of the loop in which it appears, and control is
transferred to the point immediately after the loop. The outcome of the loop in this case is the
outcome of expr. If expr is omitted, it defaults to the null value.

An example of the use of break is:

while line := read(f) do
if line == "end" then break
else write(line)

Evaluation of the loop terminates if read fails or if the file f contains a line consisting of “end”.
The expression next causes transfer to the beginning of the loop in which it occurs. For example,

while line := read(f) do
if line == "comment" then next
else write(line)

does not write the lines of f that consist of "comment".
The break and next expressions can occur only in loops, and they apply to the innermost loop

in which they appear. The argument of break can be a break or next expression, however, so that,
for example,

break break next
breaks out of two levels of loops and transfers control to the beginning of the loop in which they
occur.

Case Expressions. The case expression provides a way of selecting one of several expressions
to evaluate based on the value of a control expression, rather than its success or failure. The case
expression has the form
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case expr of {
case clauses
...
}

The value of expr is used to select one of the case clauses. A case clause has the form

expr1 : expr2

where the value of expr is compared to the value of expr1, and expr2 is evaluated if the comparison
succeeds. There is also a default case clause, which has the form

default: expr3

If no other case clause is selected, expr3 in the default clause is evaluated. An example is

case line := read(f) of {
"end": write("*** end ***")
"comment": write("*** comment ***")
default: write(line)
}

If the evaluation of the control clause fails, as for an end of file in this example, the entire case
expression fails. Otherwise, the outcome of the case expression is the outcome of evaluating the
selected expression.

Generators. As mentioned previously, an expression may produce a sequence of results. This
occurs in situations in which there is more than one possible result of a computation. An example
is

find("e", "They sit like bumps on a log.")

in which both 3 and 13 are possible results.
While most programming languages produce only the first result in such a situation, in Icon the

two results are produced one after another if the surrounding context requires both of them. Such
expressions are called generators to emphasize their capability of producing more than one result.

There are two contexts in which a generator can produce more than one result: iteration and
goal-directed evaluation.

Iteration is designated by the control structure

every expr1 do expr2

in which expr1 is repeatedly resumed to produce its results. For each such result, expr2 is evaluated.
For example,
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every i := find("e", "They sit like bumps on a log.")
do

write(i)

writes 3 and 13.
If the argument of an expression is a generator, the results produced by the generator are pro-

vided to the enclosing expression—the sequence of results is inherited. Consequently, the previous
expression can be written more compactly as

every write(find("e", "They sit like bumps on a log."))

Unlike iteration, which resumes a generator repeatedly to produce all its results, goal-directed
evaluation resumes a generator only as necessary, in an attempt to cause an enclosing expression
to succeed. While iteration is explicit and occurs only where specified, goal-directed evaluation is
implicit and is an inherent aspect of Icon’s expression-evaluation mechanism.

Goal-directed evaluation is illustrated by

if find("e", "They sit like bumps on a log") > 10
then write("found")

The first result produced by find() is 3, and the comparison operation fails. Because of goal-
directed evaluation, find is automatically resumed to produce another value. Since this value, 13, is
greater than 10, the comparison succeeds, and found is written. On the other hand, in

if find("e", "They sit like bumps on a log.") > 20
then write("found")

the comparison fails for 3 and 13. When find is resumed again, it does not produce another result,
the control clause of if-then fails, and nothing is written.

There are several expressions in Icon that are generators, including string analysis functions
that are similar in nature to find. Another generator is

i to j by k

which generates the integers from i to j by increments of k. If the by clause is omitted, the increment
defaults to one.

The operation !x is polymorphic, generating the elements of x for various types. The meaning
of "element" depends on the type of x. If x is a string, !x generates the one-character substrings of
x, so that !"hello" generates "h", "e", "l", "l", and "o". If x is a file, !x generates the lines of the file, and
so on.

Generative Control Structures. There are several control structures related to generators. The
alternation control structure,

expr1 | expr2
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generates the results of expr1 followed by the results of expr2. For example,
every write("hello" | "howdy")

writes two lines, hello and howdy.
Since alternation succeeds if either of its arguments succeeds, it can be used to produce the

effect of logical disjunction. An example is
if (i > j) | (j > k) then expr

which evaluates expr if i is greater than j or if j is greater than k.
Logical conjunction follows as a natural consequence of goal-directed evaluation. The opera-

tion
expr1 & expr2

is similar to other binary operations, such as expr1 + expr2, except that it performs no computation.
Instead, it produces the result of expr2, provided that both expr1 and expr2 succeed. For example,

if (i > j) & (j > k) then expr
evaluates expr only if i is greater than j and j is greater than k.

Repeated alternation,
|expr

generates the results of expr repeatedly and is roughly equivalent to
expr | expr | expr | ...

However, if expr fails, the repeated alternation control structure stops generating results. For
example,

|read(f)
generates the lines from the file f (one line for each repetition of the alternation) but stops when
read(f) fails.

Note that a generator may be capable of producing an infinite number of results. For example,
|(1 to 3)

can produce 1, 2, 3, 1, 2, 3, 1, 2, 3, However, only as many results as are required by context are
actually produced. Thus,

i := | (1 to 3)
only assigns the value 1 to i, since there is no context to cause the repeated alternation control
structure to be resumed for a second result.

The limitation control structure
expr1 \ expr2

limits expr1 to at most expr2 results. Consequently,
| (1 to 3) \ 5

is only capable of producing 1, 2, 3, 1, 2.
The Order of Evaluation. With the exception of the limitation control structure, argument

evaluation in Icon is strictly left-to-right. The resumption of expressions to produce additional
results is in last-in, first-out order. The result is "cross-product" generation of results in expressions
that contain several generators. For example,

every write((10 to 30 by 10) + (1 to 3))
writes 11, 12, 13, 21, 22, 23, 31, 32, 33.

Control Backtracking. Goal-directed evaluation results in control backtracking to obtain ad-
ditional results from expressions that have previously produced results, as in
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if find("e", "They sit like bumps on a log.") > 10
then write("found")

Control backtracking is limited by a number of syntactic constructions. For example, in

if expr1 then expr2 else expr3

if expr1 succeeds, but expr2 fails, expr1 is not resumed for another result. (If it were, the semantics
of this control structure would not correspond to what "if-then-else" suggests.) Such an expression
is called a bounded expression. The control clauses of loops also are bounded, as are the expressions
within compound expressions:

{ expr 1 ; expr 2 ; expr 3 ; . . . ; expr n }

These expressions are evaluated in sequence, but once the evaluation of one is complete
(whether it succeeds or fails), and the evaluation of another begins, there is no possibility of back-
tracking into the preceding one. The last expression in a compound expression is not bounded,
however.

Except in such specific situations, expressions are not bounded. For example, in

if expr1 then expr2 else expr3

neither expr2 nor expr3 is bounded. Since Icon control structures are expressions that may return
results, it is possible to write expressions such as

every write(if i > j then j to i else i to j)

which writes the integers from i to j in ascending sequence.
Data Backtracking. While control backtracking is a fundamental part of expression evaluation

in Icon, data backtracking is not performed except in a few specific operations. For example, in

(i := 3) & read(f)

the value 3 is assigned to i. Even if read(f) fails, the former value of i is not restored.
There are, however, specific operations in which data backtracking is performed. For example,

the reversible assignment operation

x <- y

assigns the value of y to x, but it restores the former value of x if control backtracking into this
expression occurs. Thus,

(i <- 3) & read(f)

assigns 3 to i but restores the previous value of i if read(f) fails.
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2.1.3 Csets and Strings

Csets are unordered sets of characters, while strings are sequences of characters. There are 256
different characters, the first 128 of which are interpreted as ASCII. The number and interpretation
of characters is independent of the architecture of the computer on which Icon is implemented.

Csets. Csets are represented literally by surrounding their characters by single quotation marks.
For example,

vowels := ’aeiouAEIOU’

assigns a cset of 10 characters to vowels.
There are several built-in csets that are the values of keywords. These include &lcase, &ucase,

and &cset, which contain the lowercase letters, the uppercase letters, and all 256 characters, respec-
tively.

Operations on csets include union, intersection, difference, and complement with respect to
&cset. Csets are used in lexical analysis. For example, the function upto(c, s) is analogous to
find(s1, s2), except that it generates the positions at which any character of c occurs in s. Thus,

upto(vowels, "They sit like bumps on a log.")

is capable of producing 3, 7, 11, 13, 16, 21, 24, and 27.
Strings. Strings are represented literally by surrounding their characters with double quotation

marks instead of single quotation marks. The empty string, which contains no characters, is given
by "". The size of a string is given by *s. For example, if

command := "Sit still!"

then the value of *command is 10. The value of *"" is 0. Space for strings is provided automatically
and there is no inherent limit to the size of a string.

There are several operations that construct strings. The principal one is concatenation, denoted
by

s1 || s2

The function repl(s, i) produces the result of concatenating s i times. Thus,

write(repl("*!",3))

writes *!*!*!.
Other string construction functions include reverse(s), which produces a string with the char-

acters of s in reverse order, and trim(s, c), which produces a string in which trailing characters of
s that occur in c are omitted. There also are functions for positioning a string in a field of a fixed
width. For example, the function left(s1,i, s2) produces a string of length i with s1 positioned at the
left and padded with copies of s2 as needed.

Substrings are produced by subscripting a string with the beginning and ending positions of
the desired substring. Positions in strings are between characters, and the position before the first
character of a string is numbered 1. For example,
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verb := command[1:4]
assigns the string "Sit" to verb. Substrings also can be specified by the beginning position and a
length, as in

verb := command[1+:3]
If the length of a substring is 1, only the first position need be given, so that the value of

command[2] is "i".
Assignment can be made to a subscripted string to produce a new string. For example,

command[1:4] := "Remain"
changes the value of command to "Remain still!".

String operations are applicative; no operation on a string in Icon changes the characters in it.
The preceding example may appear to contradict this, but in fact

command[1:4] := "Remain"
is an abbreviation for

command := "Remain" || command[5:11]
Thus, a new string is constructed and then assigned to command.
Nonpositive values can be used to specify a position with respect to the right end of a string. For

example, the value of command[-1] is "!". The value 0 refers to the position after the last character
of a string, so that if the value of command is "Sit still!",

command[5:0]
is equivalent to

command[5:11]
The subscript positions can be given in either order. Thus,

command[11:5]
produces the same result as

command[5:11]
String-analysis functions like find and upto have optional third and fourth arguments that allow

their range to be restricted to a particular portion of a string. For example,
upto(vowels, "They sit like bumps on a log.", 10, 20)

only produces positions of vowels between positions 10 and 20 of its second argument: 11, 13, and
16. If these arguments are omitted, they default to 1 and 0, so that the entire string is included in
the analysis.

Mapping. One of the more interesting string-valued functions in Icon is map(s1, s2, s3). This
function produces a string obtained from a character substitution on s1. Each character of s1 that
occurs in s2 is replaced by the corresponding character in s3. For example,

write(map("Remain still!", "aeiou", "*****"))
writes R*m**n St*ll!. Characters in s1 that do not appear in s2 are unchanged, as this example
shows. If a character occurs more than once in s2, its right-most correspondence in s3 applies.
Consequently,
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s2 := &lcase || &ucase || "aeiou"
s3 := repl("|",26) ||
repl("u",26) || "*****"
write(map("Remain still!", s2, s3))

writes u*|**| ||*||! .

2.1.4 String Scanning

String scanning is a high-level facility for string analysis that suppresses the computational details
associated with the explicit location of positions and substring specifications. In string scanning, a
subject serves as a focus of attention. A position in this subject is maintained automatically.

A string-scanning expression has the form

expr1 ? expr2

in which the evaluation of expr1 provides the subject. The position in the subject is 1 initially. The
expression expr2 is then evaluated in the context of this subject and position.

Although expr2 can contain any operation, two matching functions are useful in analyzing the
subject:

tab(i) set the position in the subject to i

move(i) increment the position in the subject by i
Both of these functions return the substring of the subject between the old and new positions. If
the position is out of the range of the subject, the matching function fails and the position is not
changed. The position can be increased or decreased. Nonpositive values can be used to refer to
positions relative to the end of the subject. Thus, tab(0) moves the position to the end of the subject,
matching the remainder of the subject.

An example of string scanning is

line ? while write(move(2))

which writes successive two-character substrings of line, stopping when there are not two characters
remaining.

In string scanning, the trailing arguments of string analysis functions such as find and upto are
omitted; the functions apply to the subject at the current position. Therefore, such functions can be
used to provide arguments for matching functions. An example is

line ? write(tab(find("::=")))

which writes the initial portion of line up to an occurrence of the string "::=".
If a matching function is resumed, it restores the position in the subject to the value that it had

before the matching function was evaluated. For example, suppose that line contains the substring
"::=". Then
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line ? ((tab(find("::=") + 3)) & write(move(10)) | write(tab(0)))

writes the 10 characters after "::=", provided there are 10 more characters. However, if there are not
10 characters remaining, move(10) fails and tab(find("::=")) is resumed. It restores the position to
the beginning of the subject, and the alternative, tab(0), matches the entire subject, which is written.

Data backtracking of the position in the subject is important, since it allows matches to be
performed with the assurance that any previous alternatives that failed to match left the position
where it was before they were evaluated.

The subject and position are directly accessible as the values of the keywords &subject and
&pos, respectively. For example,

&subject := "Hello"
assigns the string "Hello" to the subject. Whenever a value is assigned to the subject, &pos is set to
1 automatically.

The values of &subject and &pos are saved at the beginning of a string-scanning expression and
are restored when it completes. Consequently, scanning expressions can be nested.

2.1.5 Lists

A list is a linear aggregate of values (“elements”). For example,
cities := ["Portland", "Toledo", "Tampa"]

assigns a list of three strings to cities. Lists can be heterogeneous, as in
language := ["Icon", 1978, "The University of Arizona"]

An empty list, containing no elements, is produced by [ ]. The function
list(i, x)

produces a list of i elements, each of which has the value of x. The size operation *x also applies to
lists. The value of *cities is 3, for example.

An element of a list is referenced by a subscripting expression that has the same form as the
one for strings. For example,

cities[3] := "Miami"
changes the value of cities to

["Portland", "Toledo", "Miami"]
The function sort(a) produces a sorted copy of a. For example, sort(cities) produces

["Miami", "Portland", "Toledo"]
List operations, unlike string operations, are not applicative. While assignment to a substring

is an abbreviation for concatenation, assignment to a subscripted list changes the value of the
subscripted element.

A list value is a pointer to a structure that contains the elements of the list. Assignment of a list
value copies this pointer, but it does not copy the structure. Consequently, in
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states := ["Nevada", "Texas", "Maine", "Georgia"]
slist := states

both states and slist point to the same structure. Because of this,
states[2] := "Arkansas"

changes the second element of slist as well as the second element of states.
The elements of a list may be of any type, including lists, as in

tree := ["a", ["b", ["c"], ["d"]]]
which can be depicted as
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Structures also can be used to represent loops, as in

graph := ["a", ""]
graph[2] := graph

which can be depicted as
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Lists are not fixed in size. Elements can be added to them or removed from them at their ends
by queue and stack functions.

The function put(a, x) adds the value of x to the right end of the increasing its size by one.
Similarly, push(a, x) adds the value of x to the left end of a. For example,

lines := []
while put(lines, read(f))

constructs a list of the lines from the file f. Conversely,

lines := []
while push(lines, read(f))

constructs a list of lines in reverse order.
The functions pop(a) and get(a) are the same. They both remove an element from the left end

of a and return it as the value of the function call, but they fail if a is empty. Consequently,
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lines := []
while push(lines, read(f))
while write(pop(lines))

writes out the lines of f in reverse order. The function pull(a) is similar, but it removes an element
from the right end of a.

Other operations on lists include concatenation, which is denoted by

a1 ||| a2

where a1 and a2 are lists. There is no automatic conversion of other types to lists.
List sectioning is denoted by

a[i:j]

The result is a new list containing values i through j of a.
There is no inherent limit to the size of a list, either when it is originally created or as a result

of adding elements to it.

2.1.6 Sets

A set is an unordered collection of values. Unlike csets, which contain only characters, sets are
collections of Icon values that can be of any type. A set is constructed from a list by set(a). For
example,

states := set(["Virginia", "Rhode Island", "Kansas", "Illinois"])

assigns a set of four elements to states.
The operation

member(s, x)

succeeds if the value of x is a member of s but fails otherwise. The operation

insert(s, x)

adds the value of x to s if it is not already a member of s, while

delete(s, x)

deletes the value of x from s. The operations of union, intersection, and difference for sets also are
provided.

Like other structures, sets can be heterogeneous. A set can even be a member of itself, as in

insert(s, s)

There is no contradiction here, since a set value is a pointer to the structure for the set.
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2.1.7 Tables

A table is a set of pairs of values. Tables provide an associative look mechanism as contrasted with
positional references to lists. They can be subscripted with an entry value to which a value can be
assigned to make up a pair called a table element.

A table is created by

table(x)

Tables are empty initially. The value of x is an assigned default value that is produced if the
table is subscripted with an entry value to which no value has been assigned (that is, for an element
that is not in the table). For example,

states := table(0)

assigns to states a table with a default value of 0. An element can be added to states by an assign-
ment such as

states["Oregon"] := 1

which adds a table element for "Oregon" with the value 1 to states. On the other hand,

write(states ["Utah"])

writes 0, the default value, if there is no element in the table for "Utah".
Tables can be heterogeneous and have a mixture of types for entry and assigned values. Tables

grow automatically in size as new elements are added and there is no inherent limit on the size of a
table.

2.1.8 Records

A record is an aggregate of values that is referenced by named fields. Each record type has a
separate name. A record type and the names of its fields are given in a declaration. For example,

record rational(numerator, denominator)

declares a record of type rational with two fields: numerator and denominator.
An instance of a record is created by calling a record-constructor function corresponding to the

form of the declaration for the record type. Thus,

r := rational(3,5)

assigns to r a record of type rational with a numerator field of 3 and a denominator field of 5. Fields
are referenced by name, as in

write(r.numerator)

which writes 3. Fields can also be referred to by position; r[1] is equivalent to r.numerator.
There is no inherent limit to the number of different record types. The same field names can be

given for different record types, and such fields need not be in the same position for all such record
types.
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2.1.9 Input and Output

Input and output in Icon are sequential and comparatively simple. The standard input, standard
output, and standard error output files are the values of &input, &output, and &errout, respectively.
The function

open(s1,s2)

opens the file whose name is s1 according to options given by s2 and produces a value of type file.
Typical options are "r" for opening for reading and "w" for opening for writing. The default is "r".
For example,

log := open("grade.log", "w")

assigns a value of type file to log, corresponding to the data file grade.log, which is opened for
writing. The function open fails if the specified file cannot be opened according to the options
given. The function close(f) closes the file f.

The function read(f) reads a line from the file f but fails if an end of file is encountered. The
default is standard input if f is omitted.

The result of

write(x1,x2, ..., xn)

depends on the types of x1, x2, . . . , xn. Strings and types convertible to strings are written, but if
one of the arguments is a file, subsequent strings are written to that file. The default file is standard
output. Thus,

write(s1,s2)

writes the concatenation of s1 and s2 to standard output, but

write(log,s)

writes s to the file grade.log. In any event, write returns the string value of the last argument written.
The function

stop(x1, x2, ..., xn)

produces the same output as write, but it then terminates program execution.

2.1.10 Procedures

Procedure Declarations. The executable portions of an Icon program are contained in procedure
declarations. Program execution begins with a call of the procedure main.

An example of a procedure declaration is:
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procedure maxstr(slist)
local max, value
max := 0
every value := *!slist do

if value> max then max := value
return max

end

This procedure computes the longest string in a list of strings. The formal parameter slist and the
identifiers max and value are local to calls of the procedure maxstr(). Storage for them is allocated
when maxstr() is called and deallocated when maxstr() returns.

A procedure call has the same form as a function call. For example,

lines := []
while put(lines, read(f))
write(maxstr(lines))

writes the length of the longest line in the file f.
A procedure call may fail to produce a result in the same way that a built-in operation can

fail. This is indicated by fail in the procedure body in place of return. For example, the following
procedure returns the length of the longest string in slist but fails if that length is less than limit:

procedure maxstr(slist, limit)
local max, value
max := 0
every value := *!slist do

if value> max then max := value
if max < limit then fail else return max

end

Flowing off the end of a procedure body without an explicit return is equivalent to fail.
A procedure declaration may have static identifiers that are known only to calls of that procedure

but whose values are not destroyed when a call returns. A procedure declaration also may have an
initial clause whose expression is evaluated only the first time the procedure is called. The use of
a static identifier and an initial clause is illustrated by the following procedure, which returns the
longest of all the strings in the lists it has processed:
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procedure maxstrall(slist)
local value
static max
initial max := 0
every value := *!slist do

if value> max then max := value
return max

end

Procedures and Functions. Procedures and functions are used in the same way. Their names
have global scope. Other identifiers can be declared to have global scope, as in

global count
Such global declarations are on a par with procedure declarations and cannot occur within

procedure declarations.
A call such as

write(maxstr(lines))
applies the value of the identifier maxstr to lines and applies the value of the identifier write to the
result. There is nothing fixed about the values of such identifiers. In this case, the initial value of
maxstr is a procedure, as a consequence of the procedure declaration for it. Similarly, the initial
value of write is a function. These values can be assigned to other variables, as in

print := write
...

print(maxstr(lines))

in which the function that is the initial value of write is assigned to print.
Similarly, nothing prevents an assignment to an identifier whose initial value is a procedure.

Consequently,
write := 3

assigns an integer to write, replacing its initial function value.
Although it is typical to call a procedure by using an identifier that has the procedure value, the

procedure used in a call can be computed. The general form of a call is
expr 0(expr 1,expr 2, ..., expr n)

where the value of expr0 is applied to the arguments resulting from the evaluation of expr1 expr2,
..., exprn. For example,

(proclist[i])(expr1,expr2, ..., exprn)
applies the procedure that is the ith element of proclist.

Procedures may be called recursively. The recursive nature of a call depends on the fact that
procedure names are global. The “Fibonacci strings” provide an example:
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procedure fibstr(i)
if i = 1 then return "a"
else if i = 2 then return "b"
else return fibstr(i - 1) || fibstr(i - 2)

end

An identifier that is not declared in a procedure and is not global defaults to local. Thus, local
declarations can be omitted, as in

procedure maxstr(slist)
max := 0
every value := * !slist do

if value > max then max := value
return max

end

Procedures as Generators. In addition to returning and failing, a procedure can also suspend.
In this case, the values of its arguments and local identifiers are not destroyed, and the call can
be resumed to produce another result in the same way a built-in generator can be resumed. An
example of such a generator is

procedure intseq(i)
repeat {

suspend i
i +:= 1
}

end

A call intseq(10), for example, is capable of generating the infinite sequence of integers 10, 11,
12, . . . . For example,

every f(intseq(10) \ 5)

calls f(10), f(11), f(12), f(13), f(14).
If the argument of suspend is a generator, the generator is resumed when the call is resumed and

the call suspends again with the result it produces. A generator of the Fibonacci strings provides
an example:
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procedure fibstrseq()
local s1, s2, s3
s1 := "a"
s2 := "b"
suspend (s1 | s2)
repeat {

suspend s3 := s1 || s2
s1 := s2
s2 := s3
}

end

When this procedure is called, the first suspend expression produces the value of s1, "a". If
the call of fibstrseq() is resumed, the argument of suspend is resumed and produces the value of
s2, "b". If the call is resumed again, there is no further result for the first suspend, and evaluation
continues to the repeat loop.

Repeated alternation often is useful in supplying an endless number of alternatives. For exam-
ple, the procedure intseq(i) can be rewritten as

procedure intseq(i)
suspend i | (i +:= |1)

end

Note that |1 is used to provide an endless sequence of increments.
Argument Transmission. Omitted arguments in a procedure or function call (including trailing

ones) default to the null value. Extra arguments are evaluated, but their values are discarded.
Some functions, such as write(), may be called with an arbitrary number of arguments. All

arguments to procedures and functions are passed by value. If the evaluation of an argument ex-
pression fails, the procedure or function is not called. This applies to extra arguments. Arguments
are not dereferenced until all of them have been evaluated. Dereferencing cannot fail. Since no ar-
gument is dereferenced until all argument expressions are evaluated, expressions with side effects
can produce unexpected results. Thus, in

write(s, s := "hello")
the value written is hellohello, regardless of the value of s before the evaluation of the second
argument of write().

Dereferencing in Return Expressions. The result returned from a procedure call is deref-
erenced unless it is a global identifier, a static identifier, a subscripted structure, or a subscripted
string-valued global identifier.

In these exceptional cases, the variable is returned and assignment can be made to the procedure
call. An example is
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procedure maxel(a, i, j)
if i > j then return a[i]
else return a[j]

end

Here a list element, depending on the values of i and j, is returned. An assignment can be made
to it, as in

maxel(lines, i, j) := "end"
which assigns "end" to lines[i] or lines[j], depending on the values of i and j.

Mutual Evaluation. In a call expression, the value of expr0 can be an integer i as well as a
procedure. In this case, called mutual evaluation, the result of the ith argument is produced. For
example,

i := 1(find(s1, line1), find(s2, line2))
assigns to i the position of s1 in line1, provided s1 occurs in line1 and that s2 occurs in line2. If
either call of find fails, the expression fails and no assignment is made.

The selection integer in mutual evaluation can be negative, in which case it is interpreted relative
to the end of the argument list. Consequently,

(-1)(expr1,expr2, ..., exprn)
produces the result of exprn and is equivalent to

expr1 & expr2 & ... & exprn
The selection integer can be omitted, in which case it defaults to -1.

2.1.11 Co-Expressions

The evaluation of an expression in Icon is limited to the site in the program where it appears. Its
results can be produced only at that site as a result of iteration or goal-directed evaluation. For
example, the results generated by intseq(i) described in Section 2.1.10 can only be produced where
it is called, as in

every f(intseq(10) \ 5)
It is often useful, however, to be able to produce the results of a generator at various places in

the program as the need for them arises. Co-expressions provide this facility by giving a context
for the evaluation of an expression that is maintained in a data structure. Co-expressions can be
activated to produce the results of a generator on demand, at any time and place in the program.

A co-expression is constructed by
create expr

The expression expr is not evaluated at this time. Instead, an object is produced through which
expr can be resumed at a later time. For example,

label := create ("L" || (1 to 100) || ":")
assigns to label a co-expression for the expression

"L" || (1 to 100) || ":"
The operation @label activates this co-expression, which corresponds to resuming its expression.
For example,
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write(@label)
write(" tstl count")
write(@label)

writes

L1:
tstl count

L2:

If the resumption of the expression in a co-expression does not produce a result, the co-
expression activation fails. For example, after @label has been evaluated 100 times, subsequent
evaluations of @label fail. The number of results that a co-expression e has produced is given by
*e.

The general form of the activation expression is
expr1 @ expr2

which activates expr2 and transmits the result of expr1 to it. This form of activation can be used to
return a result to the co-expression that activated the current one.

A co-expression is a value like any other value in Icon and can be passed as an argument to a
procedure, returned from a procedure. and so forth. A co-expression can survive the call of the
procedure in which it is created.

If the argument of a create expression contains identifiers that are local to the procedure in which
the create occurs, copies of these local identifiers are included in the co-expression with the values
they have at the time the create expression is evaluated. These copied identifiers subsequently are
independent of the local identifiers in the procedure. Consider, for example,

procedure labgen(tag)
local i, j
...
i := 10
j := 20
e := create (tag || (i to j) || ":")
...
i := j
if i > 15 then return e
...

end

The expression
labels := labgen("X")

assigns to labels a co-expression that is equivalent to evaluating
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create ("X" || (10 to 20) || ":")

The fact that i is changed after the co-expression was assigned to e, but before e returns, does
not affect the co-expression, since it contains copies of i and j at the time it was created. Subsequent
changes to the values of i or j do not affect the co-expression.

A copy of a co-expression e is produced by the refresh operation, ˆe. When a refreshed copy
of a co-expression is made, its expression is reset to its initial state, and the values of any local
identifiers in it are reset to the values they had when the co-expression was created. For example,

newlabels := ˆlabels

assigns to newlabels a co-expression that is capable of producing the same results as labels, regard-
less of whether or not labels has been activated.

The value of the keyword &main is the co-expression for the call of main() that initiates program
execution.

2.1.12 Diagnostic Facilities

String Images. The function type(x) only produces the string name of the type of x, but the function
image(x) produces a string that shows the value of x. For strings and csets, the value is shown with
surrounding quotation marks in the fashion of program literals. For example,

write(image("Hi there!"))

writes "Hi there!", while

write(image(’aeiou’))

writes ’aeiou’.
For structures, the type name and size are given. For example,

write(image([]))

writes list(0).
Various forms are used for other types of data, using type names where necessary so that dif-

ferent types of values are distinguishable.
Tracing. If the value of the keyword &trace is nonzero, a trace message is produced whenever

a procedure is called, returns, fails, suspends, or is resumed. Trace messages are written to standard
error output. The value of &trace is decremented for every trace message. Tracing stops if the value
of &trace becomes zero, which is its initial value. Suppose that the following program is contained
in the file fibstr.icn:
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procedure main()
&trace := -1
fibstr(3)

end

procedure fibstr(i)
if i = 1 then return "a"
else if i = 2 then return "b"
else return fibstr(i -1) || fibstr(i -2)

end

The trace output of this program is

fibstr.icn: 3 | fibstr(3)
fibstr.icn: 9 | | fibstr(2)
fibstr.icn: 8 | | fibstr returned "b"
fibstr.icn: 9 | | fibstr(1)
fibstr.icn: 7 | | fibstr returned "b"
fibstr.icn: 9 | fibstr returned "ba"
fibstr.icn: 4 main failed

In addition to the indentation corresponding to the level of procedure call, the value of the
keyword &level also is the current level of call.

Displaying Identifier Values. The function display(i,f) writes a list of all identifiers and their
values for i levels of procedure calls, starting at the current level. If i is omitted, the default is &level,
while if f is omitted, the list is written to standard error output. The format of the listing produced
by display is illustrated by the following program:

procedure main()
log := open("grade.log", "w")
while write(log, check(readO))

end

procedure check(value)
static count
initial count := 0
if numeric(value) then {

count +:= 1
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return value
}

else {
display()
stop("nonnumeric value")
}

end

Suppose that the tenth line of input is the nonnumeric string "3.a". Then the output of display()
is

check local identifiers:
value = "3.a"
count = 9

main local identifiers:
log = file(grade.log)

global identifiers:
main = procedure main
check = procedure check
open = function open
write = function write
read = function read
numeric = function numeric
display = function display
stop = function stop

Error Messages. If an error is encountered during program execution, a message is written
to standard error output and execution is terminated. For example, if the tenth line of a program
contained in the file check.icn is

i +:= "x"
evaluation of this expression produces the error message

Run-time error 102 at line 10 in check.icn
numeric expected
offending value: "x"

2.2 Language Features and the Implementation

Even a cursory consideration of Icon reveals that some of its features present implementation prob-
lems and require approaches that are different from ones used in more conventional languages. In



36

the case of a language of the size and complexity of Icon, it is important to place different aspects
of the implementation in perspective and to identify specific problems.

Values and Variables. The absence of type declarations in Icon has far-reaching implications.
Since any variable may have a value of any type and the type may change from time to time during
program execution, there must be a way of representing values uniformly. This is a significant
challenge in a language with a wide variety of types ranging from integers to co-expressions. Het-
erogeneous structures follow as a natural consequence of the lack of type declarations.

In one sense, the absence of type declarations simplifies the implementation: there is not much
that can be done about types during program translation (compilation), and some of the work that
is normally performed by conventional compilers can be avoided. The problems do not go away,
however — they just move to another part of the implementation, since run-time type checking is
required. Automatic type conversion according to context goes hand-in-hand with type checking.

Storage Management. Since strings and structures are created during program execution,
rather than being declared, the space for them must be allocated as needed at run time. This
implies, in turn, some mechanism for reclaiming space that has been allocated but which is no
longer needed—"garbage collection." These issues are complicated by the diversity of types and
sizes of objects, the lack of any inherent size limitations, and the possibility of pointer loops in
circular structures.

Strings. Independent of storage-management considerations, strings require special attention
in the implementation. The emphasis of Icon is on string processing, and it is necessary to be able
to process large amounts of string data sufficiently. Strings may be very long and many operations
produce substrings of other strings. The repertoire of string analysis and string synthesis functions
is large. All this adds up to the need for a well-designed and coherent mechanism for handling
strings.

Structures. Icon’s unusual structures, with sophisticated access mechanisms, also pose prob-
lems. In particular, structures that can change in size and can grow without limit require different
implementation approaches than static structures of fixed size and organization.

The flexibility of positional, stack, and queue access mechanisms for lists requires compromises
to balance efficient access for different uses. Sets of values with arbitrary types, combined with a
range of set operations, pose non-trivial implementation problems. Tables are similar to sets, but
require additional attention because of the implicit way that elements are added.

Procedures and Functions. Since procedures and functions are values, they must be repre-
sented as data objects. More significantly, the meaning of a function call cannot, in general, be
determined when a program is translated. The expression write(s) may write a string or it may do
something else, depending on whether or not write still has its initial value. Such meanings must,
instead, be determined at run time.

Polymorphic Operations. Although the meanings of operations cannot be changed during
program execution in the way that the meanings of calls can, several operations perform different
computations depending on the types of their operands. Thus, x[i] may subscript a string, a list, or
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a table.
The meanings of some operations also depend on whether they occur in an assignment or a

dereferencing context. For example, if s has a string value, assignment to s[i] is an abbreviation for
a concatenation followed by an assignment to s, while if s[i] occurs in a context where its value is
needed, it is simply a substring operation. Moreover, the context cannot, in general, be determined
at translation time.

The way subscripting operations are specified in Icon offers considerable convenience to the
programmer at the expense of considerable problems for the implementer.

Expression Evaluation. Generators and goal-directed evaluation present obvious implementa-
tion problems. There is a large body of knowledge about the implementation of expression evalu-
ation for conventional languages in which expressions always produce a single result, but there is
comparatively little knowledge about implementing expressions that produce results in sequence.

While there are languages in which expressions can produce more than one result, this capabil-
ity is limited to specific contexts, such as pattern matching, or to specific control structures or data
objects.

In Icon, generators and goal-directed evaluation are general and pervasive and apply to all
evaluation contexts and to all types of data. Consequently, their implementation requires a fresh
approach. The mechanism also has to handle the use of failure to drive control structures and
must support novel control structures, such as alternation and limitation. Efficiency is a serious
concern, since whatever mechanism is used to implement generators is also used in conventional
computational situations in which only one result is needed.

String Scanning. String scanning is comparatively simple. The subject and position — "state
variables" — have to be saved at the beginning of string scanning and restored when it is completed.
Actual string analysis and matching follow trivially from generators and goal-directed evaluation.

Co-Expressions. Co-expressions, which are only relevant because of the expression-evaluation
mechanism of Icon, introduce a whole new set of complexities. Without co-expressions, the results
that a generator can produce are limited to its site in the program. Control backtracking is limited
syntactically, and its scope can be determined during program translation. With co-expressions, a
generator in a state of suspension can be activated at any place and time during program execution.

RETROSPECTIVE: Icon has a number of unusual features that are designed to facilitate pro-
gramming, and it has an extensive repertoire of string and structure operations. One of Icon’s
notable characteristics is the freedom from translation-time constraints and the ability to specify
and change the meanings of operations at run time. This run-time flexibility is valuable to the pro-
grammer, but it places substantial burdens on the implementation—and also makes it interesting.

At the top level, there is the question of how actually to carry out some of the more sophisticated
operations. Then there are questions of efficiency, both in execution speed and storage utilization.
There are endless possibilities for alternative approaches and refinements.

It is worth noting that many aspects of the implementation are relatively independent of each
other and can be approached separately. Operations on strings and structures are largely disjoint
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and can, except for general considerations of the representation of values and storage management,
be treated as independent problems.

The independence of expression evaluation from other implementation considerations is even
clearer. Without generators and goal-directed evaluation, Icon would be a fairly conventional high-
level string and structure processing language, albeit one with interesting implementation problems.
On the other hand, generators and goal-directed evaluation are not dependent in any significant
way on string and structure data types. Generators, goal-directed evaluation, and related control
structures could just as well be incorporated in a programming language emphasizing numerical
computation. The implementation problems related to expression evaluation in the two contexts
are largely the same.

While untyped variables and automatic storage management have pervasive effects on the over-
all implementation of Icon, there are several aspects of Icon that are separable from the rest of the
language and its implementation. Any specific data structure, string scanning, or co-expressions
could be eliminated from the language without significantly affecting the rest of the implementa-
tion. Similarly, new data structures and new access mechanisms could be added without requiring
significant modifications to the balance of the implementation.

EXERCISES
2.1 What is the outcome of the following expression if the file f contains a line consisting of “end”,
or if it does not?

while line := read(f) do
if line == "end" then break
else write(line)

2.2 What does

write("hello" | "howdy")

write?
2.3 What is the result of evaluating the following expression:

1(1 to 3) > 10

2.4 Explain the rationale for dereferencing of variables when a procedure call returns.
2.5 Give an example of a situation in which it cannot be determined until run time whether a string
subscripting expression is used in an assignment or a dereferencing context.



Chapter 3

Organization of the Implementation

PERSPECTIVE: Many factors influence the implementation of a programming language. The prop-
erties of the language itself, of course, are of paramount importance. Beyond this, goals, resources,
and many other factors may affect the nature of an implementation in significant and subtle ways.

In the case of the implementation of Icon described here, several unusual factors deserve men-
tion. To begin with, Icon’s origins were in a research project, and its implementation was designed
not only to make the language available for use but also to support further language development.
The language itself was less well defined and more subject to modification than is usually the case
with an implementation. Therefore, flexibility and ease of modification were important implemen-
tation goals.

Although the implementation was not a commercial enterprise, neither was it a toy or a system
intended only for a few “friendly users.” It was designed to be complete, robust, easy to maintain,
and sufficiently efficient to be useful for real applications in its problem domain.

Experience with earlier implementations of SNOBOL4, SL5, and the Ratfor implementation
of Icon also influenced the implementation that is described here. They provided a repertoire of
proven techniques and a philosophy of approach to the implementation of a programming language
that has novel features.

The computing environment also played a major role. The implementation started on a PDP-
11/70 running under UNIX. The UNIX environment (Ritchie and Thompson 1978), with its exten-
sive range of tools for program development, influenced several aspects of the implementation in a
direct way. C (Kernighan and Ritchie 1978) is the natural language for writing such an implemen-
tation under UNIX, and its use for the majority of Icon had pervasive effects, which are described
throughout this book. Tools, such as the Yacc parser-generator (Johnson 1975), influenced the
approach to the translation portion of the implementation.

Since the initial work was done on a PDP-11/70, with a user address space of only l28K bytes
(combined instruction and data spaces), the size of the implementation was a significant concern. In
particular, while the Ratfor implementation of Icon fit comfortably on computers with large address
spaces, such as the DEC-10, CDC Cyber, and IBM 370, this implementation was much too large
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to fit on a PDP-11/70.

3.1 The Icon Virtual Machine

The implementation of Icon is organized around a virtual machine (Newey, Poole, and Waite 1972;
Griswold 1977). Virtual machines, sometimes called abstract machines, serve as software design
tools for implementations in which the operations of a language do not fit a particular computer
architecture or where portability is a consideration and the attributes of several real computer ar-
chitectures can be abstracted in a single common model. The expectation for most virtual machine
models is that a translation will be performed to map the virtual machine operations onto a specific
real machine. A virtual machine also provides a basis for developing an operational definition of a
programming language in which details can be worked out in concrete terms.

During the design and development phases of an implementation, a virtual machine serves as
an idealized model that is free of the details and idiosyncrasies of any real machine. The virtual
machine can be designed in such a way that treatment of specific, machine-dependent details can
be deferred until it is necessary to translate the implementation of the virtual machine to a real one.

Icon’s virtual machine only goes so far. Unlike the SNOBOL4 virtual machine (Griswold
1972), it is incomplete and characterizes only the expression-evaluation mechanism of Icon and
computations on Icon data. It does not, per se, include a model for the organization of memory.
There are many aspects of the Icon run-time system, such as type checking, storage allocation and
garbage collection, that are not represented in the virtual machine. Instead Icon’s virtual machine
serves more as a guide and a tool for organizing the implementation than it does as a rigid structure
that dominates the implementation.

3.2 Components of the Implementation

There are three major components of the virtual machine implementation of Icon: a translator, a
linker, and a run-time system. The translator and linker are combined to form a single executable
program, but they remain logically independent.

The translator plays the role of a compiler for the Icon virtual machine. It analyzes source
programs and converts them to virtual machine instructions. The output of the translator is called
ucode. Ucode is represented as ASCII which is helpful in debugging the implementation.

The linker combines one or more ucode files into a single program for the virtual machine. This
allows programs to be written and translated in a number of modules, and it is particularly useful
for giving users access to pretranslated libraries of Icon procedures. The output of the linker, called
icode, is in binary format for compactness and ease of processing by the virtual machine. Ucode
and icode instructions are essentially the same, differing mainly in their format.

Translating and linking are done in two phases:
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Icon program translator ucode linker icode- - - -

These phases can be performed separately. If only the first phase is performed, the result is
ucode, which can be saved and linked at another time.

The run-time system consists of an interpreter for icode and a library of support routines to carry
out the various operations that may occur when an Icon program is executed. The interpreter serves,
conceptually, as a software realization of the Icon virtual machine. It decodes icode instructions
and their operands and carries out the corresponding operations.

It is worth noting that the organization of the Icon system does not depend in any essential way
on the use of an interpreter. In fact, in the early versions of this implementation, the linker produced
assembly-language code for the target machine. That code then was assembled and loaded with the
run-time library. On the surface, the generation of machine code for a specific target machine
rather than for a virtual machine corresponds to the conventional compilation approach. However,
this is somewhat of an illusion, since the machine code consists largely of calls to run-time library
routines corresponding to virtual machine instructions. Execution of machine code in such an
implementation therefore differs only slightly from interpretation, in which instruction decoding is
done in software rather than in hardware. The difference in speed in the case of Icon is relatively
minor.

An interpreter offers a number of advantages over the generation of machine code that offset
the small loss of efficiency. The main advantage is that the interpreter gets into execution very
quickly, since it does not require a loading phase to resolve assembly-language references to library
routines. Icode files also are much smaller than the executable binary files produced by a loader,
since the run-time library does not need to be included in them. Instead, only one sharable copy of
the run-time system needs to be resident in memory when Icon is executing.

3.3 The Translator

The translator that produces ucode is relatively conventional. It is written entirely in C and is
independent of the architecture of the target machine on which Icon runs. Ucode is portable from
one target machine to another.

The translator consists of a lexical analyzer, a parser, a code generator, and a few support
routines. The lexical analyzer converts a source-language program into a stream of tokens that
are provided to the parser as they are needed. The parser generates abstract syntax trees on a per-
procedure basis. These abstract syntax trees are in turn processed by the code generator to produce
ucode. The parser is generated automatically by Yacc from a grammatical specification. Since the
translator is relatively conventional and the techniques that it uses are described in detail elsewhere
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(Aho, Lam, Sethi, and Ullman 2006), it is not discussed here.
There is one aspect of lexical analysis that deserves mention. The body of an Icon procedure

consists of a series of expressions that are separated by semicolons. However, these semicolons
usually do not need to be provided explicitly, as illustrated by examples in Chapter 2. Instead, the
lexical analyzer performs semicolon insertion. If a line of a program ends with a token that is legal
for ending an expression, and if the next line begins with a token that is legal for beginning an
expression, the lexical analyzer generates a semicolon token between the lines. For example, the
two lines

i := j + 3
write(i)

are equivalent to

i := j + 3;
write(i)

since an integer literal is legal at the end of an expression and an identifier is legal at the beginning
of an expression.

If an expression spans two lines, the place to divide it is at a token that is not legal at the end of
a line. For example,

s1 := s2 ||
s3

is equivalent to

s1 := s2 || s3

No semicolon is inserted, since || is not legal at the end of an expression.

3.4 The Linker

The linker reads ucode files and writes icode files. An icode file consists of an executable header
that loads the run-time system, descriptive information about the file, operation codes and operands,
and data specific to the program. The linker, like the translator, is written entirely in C. While
conversion of ucode to icode is largely a matter of reformatting, the linker performs two other
functions.
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3.4.1 Scope Resolution

The scope of an undeclared identifier in a procedure depends on global declarations (explicit or
implicit) in the program in which the procedure occurs. Since the translator in general operates on
only one module of a program, it cannot resolve the scope of undeclared identifiers, because not
all global scope information is contained in any one module. The linker, on the other hand, pro-
cesses all the modules of a program, and hence it has the task of resolving the scope of undeclared
identifiers.

An identifier may be global for several reasons:

• As the result of an explicit global declaration.

• As the name in a record declaration.

• As the name in a procedure declaration.

• As the name of a built-in function.

If an identifier with no local declaration falls into one of these categories, it is global. Otherwise
it is local.

3.4.2 Construction of Run-Time Structures

A number of aspects of a source-language Icon program are represented at run time by various data
structures. These structures are described in detail in subsequent chapters. They include procedure
blocks, strings, and blocks for cset and real literals that appear in the program.

This data is represented in ucode in a machine-independent fashion. The linker converts this
information into binary images that are dependent on the architecture of the target computer.

3.5 The Run-Time System

Most of the interesting aspects of the implementation of Icon reside in its run-time system. This
run-time system is written mostly in C, although there are a few lines of assembly-language code
for checking for arithmetic overflow and for co-expressions. The C portion is mostly machine-
independent and portable, although some machine-specific code is needed for some idiosyncratic
computer architectures and to interface some operating-system environments.

There are two main reasons for concentrating the implementation in the run-time system:

• Some features of Icon do not lend themselves to translation directly into executable code for
the target machine, since there is no direct image for them in the target-machine architecture.
The target machine code necessary to carry out these operations therefore is too large to place
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in line; instead, it is placed in library routines that are called from in-line code. Such features
range from operations on structures to string scanning.

• Operations that cannot be determined at translation time must be done at run time. Such
operations range from type checking to storage allocation and garbage collection.

The run-time system is logically divided into four main parts: initialization and termination
routines, the interpreter, library routines called by the interpreter, and support routines called by
library routines.

Initialization and Termination Routines. The initialization routine sets up regions in which
objects created at run time are allocated. It also initializes some structures that are used during
program execution. Once these tasks are completed, control is transferred to the Icon interpreter.

When a program terminates, either normally or because of an error, termination routines flush
output buffers and return control to the operating system.

The Interpreter. The interpreter analyzes icode instructions and their operands and performs
corresponding operations. The interpreter is relatively simple, since most complex operations are
performed by library routines. The interpreter itself is described in Chapter 8.

Library Routines. Library routines are divided into three categories, depending on the way
they are called by the interpreter: routines for Icon operators, routines for Icon built-in functions,
and routines for complicated virtual machine instructions.

The meanings of operators are known to the translator and linker, and hence they can be called
directly. On the other hand, the meanings of functions cannot be determined until they are executed,
and hence they are called indirectly.

Support Routines. Support routines include storage allocation and garbage collection, as well
as type checking and conversion. Such routines typically are called by library routines, although
some are called by other support routines.

RETROSPECTIVE: Superficially, the implementation of Icon appears to be conventional. An
Icon program is translated and linked to produce an executable binary file. The translator and
linker are conventional, except that they generate code and data structures for a virtual machine
instead of for a specific computer.

The run-time system dominates the implementation and plays a much larger role than is played
by run-time systems in conventional implementations. This run-time system is the focus of the
remainder of this book.

EXERCISES
3.1 Explain why there is only a comparatively small difference in execution times between a

version of Icon that generates assembly-language code and one that generates virtual machine code
that is interpreted.

3.2 List all the tokens in the Icon grammar that are legal as the beginning of an expression and
as the end of an expression. Are there any tokens that are legal as both? As neither?
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3.3 Is a semicolon inserted by the lexical analyzer between the following two program lines?

s1 := s2
|| s3

3.4 Is it possible for semicolon insertion to introduce syntactic errors into a program that would
be syntactically correct without semicolon insertion?
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Chapter 4

Values and Variables

PERSPECTIVE: No feature of the Icon programming language has a greater impact on the imple-
mentation than untyped variables — variables that have no specific type associated with them. This
feature originated in Icon’s predecessors as a result of a desire for simplicity and flexibility.

The absence of type declarations reduces the amount that a programmer has to learn and re-
member. It also makes programs shorter and (perhaps) easier to write. The flexibility comes
mainly from the support for heterogeneous aggregates. A list, for example, can contain a mix-
ture of strings, integers, records, and other lists. There are numerous examples of Icon programs in
which this flexibility leads to programming styles that are concise and simple. Similarly, "generic"
procedures, whose arguments can be of any type, often are useful, especially for modeling experi-
mental language features.

While these facilities can be provided in other ways, such as by C’s union construct, Icon
provides them by the absence of features, which fits with the philosophy of making it easy to write
good programs rather than hard to write bad ones.

The other side of the coin is that the lack of type declarations for variables makes it impossible
for the translator to detect most type errors and defers type checking until the program is executed.
Thus, a check that can be done only once at translation time in a language with a strong compile-
time type system must be done repeatedly during program execution in Icon. Furthermore, just
as the Icon translator cannot detect most type errors, a person who is writing or reading an Icon
program does not have type declarations to help clarify the intent of the program.

Icon also converts arguments to the expected type where possible. This feature is, neverthe-
less, separable from type checking; Icon could have the latter without the former. However, type
checking and conversion are naturally intertwined in the implementation.

As far as the implementation is concerned, untyped variables simplify the translator and com-
plicate the run-time system. There is little the translator can do about types. Many operations are
polymorphic, taking arguments of different types and sometimes performing significantly different
computations, depending on those types. Many types are convertible to others. Since procedures
are data values and may change meaning during program execution, there is nothing the translator
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can know about them. For this reason, the translator does not attempt any type checking or generate
any code for type checking or conversion. All such code resides in the run-time routines for the
functions and operations themselves.

There is a more subtle way in which untyped variables influence the implementation. Since any
variable can have any type of value at any time, and can have different types of values at different
times, all values must be the same size. Furthermore, Icon’s rich repertoire of data types includes
values of arbitrary size-lists, tables, procedures, and so on.

The solution to this problem is the concept of a descriptor, which either contains the data
for the value, if it is small enough, or else contains a pointer to the data if it is too large to fit
into a descriptor. The trick, then, is to design descriptors for all of Icon’s data types, balancing
considerations of size, ease of type testing, and efficiency of accessing the actual data.

4.1 Descriptors

Since every Icon value is represented by a descriptor, it is important that descriptors be as small as
possible. On the other hand, a descriptor must contain enough information to determine the type
of the value that it represents and to locate the actual data. Although values of some types cannot
possibly fit into any fixed-size space, it is desirable for frequently used, fixed-sized values, such as
integers, to be stored in their descriptors. This allows values of these types to be accessed directly
and avoids the need to provide storage elsewhere for such values.

If Icon were designed to run on only one kind of computer, the size and layout of the descriptor
could be tailored to the architecture of the computer. Since the implementation is designed to
run on a wide range of computer architectures, Icon takes an approach similar to that of C. Its
descriptor is composed of “words,” which are closely related to the concept of a word on the
computer on which Icon is implemented. One word is not large enough for a descriptor that must
contain both type information and an integer or a pointer. Therefore, a descriptor consists of two
words, which are designated as the d-word and the v-word, indicating that the former contains
descriptive information, while the latter contains the value

d-word
v-word

The dotted line between the two words of a descriptor is provided for readability. A descriptor
is merely two words, and the fact that these two words constitute a descriptor is a matter of context.

The v-word of a descriptor may contain either a value, such as an integer, or a pointer to other
data. In C terms. the v-word may contain a variety of types, including both ints and pointers.
On many computers, C ints and C pointers are the same size. For some computers, however, C
compilers have a memory-model in which integers are smaller than pointers, which must allow
access to a large amount of memory. In this situation, the C long or long long type are the same size
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as C pointers. There are computers with many different word sizes, but the main considerations
in the implementation of Icon are the accommodation of computers with 32- and 64-bit words and
the large-memory model, in which pointers are larger than integers. In the large-memory model, a
v-word must accommodate the largest of the types.

The d-words of descriptors contain a type code (a small integer) in their least significant bits and
flags in their most significant bits. There are twelve type codes that correspond to source-language
data types:

data type type code

null null

integer integer or long

real number real

cset cset

file file

procedure proc

list list

set set

table table

record record

co-expression coexpr
Other type codes exist for internal objects, which are on a par with source-language objects,

from an implementation viewpoint, but which are not visible at the source-language level. The
actual values of these codes are not important, and they are indicated in diagrams by their type
code names.

4.1.1 Strings

There is no type code for strings. They have a special representation in which the d-word contains
the length of the string (the number of characters in it) and the v-word points to the first character
in the string:

n
- first character

length

String descriptors are called qualifiers. In order to make qualifiers more intelligible in the
diagrams that follow, a pointer to a string is followed by the string in quotation marks rather than
by an address. For example, the qualifier for "hello" is depicted as
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5
- "hello"

length

In order to distinguish qualifiers from other descriptors with type codes that might be the same
as a string length, all descriptors that are not qualifiers have an n flag in the most significant bit of
the d-word. The d-words of qualifiers do not have this n flag, and string lengths are restricted to
prevent their overflow into this flag position, the most significant bit of a 32- or 64-bit dword.

4.1.2 The Null Value

A descriptor for the null value has the form

nulln

0

As explained previously, the n flag occurs in this and all other descriptors that are not qualifiers
so that strings can be easily and unambiguously distinguished from all other kinds of values. The
value in the v-word could be any constant value, but zero is useful and easily identified—and
suggests "null."

In the diagrams that follow, a null block-pointer is represented as

ø

Icon version 6 used descriptors in blocks to refer to other blocks (see section 4.2). Subsequent
versions switched to using pointers.

4.1.3 Integers

Icon supports word-size integers at least 32-bits in size. Such integers therefore are typically C
longs, depending on the computer architecture. As long as it fits, the value of an Icon integer is
stored in the v-word of its descriptor. For example, the integer 13570 is represented by

integern

13750

Note that the n flag distinguishes this descriptor from a string whose first character might be at
the address 13570 and whose length might have the same value as the type code for integer.

An Icon integer that fits in the v-word is stored there. An integer that is too large to fit into
a word is stored in a data structure that is pointed to by the v-word, as illustrated in the next
section. The two representations of integers are distinguished by different internal type codes:
integer for integers that are contained in the v-words of their descriptors and lrgint for integers that
are contained in blocks pointed to by the v-words of their descriptors. Thus, there are two internal
types for one source-language data type.
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4.2 Blocks

All other types of Icon data are represented by descriptors with v-words that point to blocks of
words. These blocks have a comparatively uniform structure that is designed to facilitate their
processing during garbage collection.

The first word of every block, called its title, contains a type code. This type code is the same
code that is in the type-code portion of the d-word of a descriptor that points to the block. Some
blocks are fixed in size for all values of a given type. For example, on a computer with 32-bit
words, the source language integer 5,000,000,000 is stored in a large integer block:

lrgintnp
- lrgint

5,000,000,000

title

The p flag in the descriptor indicates that the v-word contains a pointer to a block.
Blocks of some other types, such as record blocks, vary in size from value to value, but any one

block is fixed in size and never grows or shrinks. If the type code in the title does not determine
the size of the block, the second word in the block contains its size in bytes. In the diagrams that
follow, the sizes of blocks are given for computers with 32-bit words. The diagrams would be
slightly different for computers with 16-bit words.

Records, which differ in size depending on how many fields they have, are examples of blocks
that contain their sizes. For example, given the record declaration

record complex(r, i)

and

point := complex(1, 3)

the value of point is

recordnp
- record

32
title
size of block in bytes

id
- record constructor

integern

1
integern

3

The record-constructor block contains information that was used to resolve field references, but
has now been mostly superseded – see chapter ?? for further details.
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The id field is present in many blocks. Its purpose is to distinguish between different blocks
of the same type (for example, it is used in the computation of the hash value that determines
where to place a value in a table — see section 7.3 for details). The id field is also printed out
by diagnostic routines; it is incremented for each block created. The runtime system maintains
separate id counters for blocks of different types.

With the declaration

record term(value, code, count)

and

word := term("chair", "noun", 4)

the value of word is:

recordnp
- record

40
title
size of block

id
- record-constructor

5
- "chair"

4
- "noun"

integern

4

As illustrated by these examples, blocks may contain descriptors as well as non-descriptor
data. Non-descriptor data comes first in the block, followed by any descriptors, as illustrated by
the preceding figure. The location of the first descriptor in a block is constant for all blocks of a
given type, which facilitates garbage collection. Block-pointers may be placed anywhere before
the descriptors, but the garbage collector expects them to be contiguous and in a fixed place for all
blocks of a given type.

Blocks for the remaining types are described in subsequent chapters.

4.3 Variables

Variables are represented by descriptors, just as values are. This representation allows values and
variables to be treated uniformly in terms of storage and access. Variables for identifiers point to
descriptors for the corresponding values. Variables always point to descriptors for values, never to
other variables. For example, if

s := "hello"
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then a variable for s has the form

s npv
- 5

- "hello"

The v flag distinguishes descriptors for variables from descriptors for values.
The values of local identifiers are kept on a stack, while the values of global and static identifiers

are located at fixed places in memory. Variables that point to the values of identifiers are created by
icode instructions that correspond to the use of the identifiers in the program.

Some variables, such as record field references, are computed. A variable that references a
value in a data structure points to the start of the data structure. The least-significant bits of the
d-word for such a variable contain the offset, in words, of the value descriptor from the top of the
block in which the value is contained. The use of words, rather than bytes, allows larger offsets,
which is important for computers with 16-bit words. For example, the variable word.count for the
record given in the preceding section is

8npv
-

record
40

-

-

id
- record-constructor block

5
- "chair"

4
- "noun"

integern

4

Note that the variable word.count cannot be determined at translation time, since the type of
word is not known then and different record types could have count fields in different positions.

4.3.1 Operations on Variables

There are two fundamentally different contexts in which a variable can be used: dereferencing and
assignment.

Suppose, as shown previously, that the value of the identifier s is the string "hello". Then a
variable descriptor that points to the value of s and the corresponding value descriptor for "hello"
have the following relationship:

In an expression such as write(s), s is dereferenced by fetching the descriptor pointed to by the
v-word of the variable.
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s npv
- 5

- "hello"

In the case of assignment, as in

s := 13570

the value descriptor pointed to by the v-word of the variable descriptor changed:

s npv
- integern

13570

These operations on variables correspond to indirect load and store instructions of a typical
computer.

4.3.2 Special Variables

Icon has several variables with special properties that complicate assignment and dereferencing.
Consider, for example, the keyword &trace. Its value must always be an integer. Consequently, in
an assignment such as

&trace := expr

the value produced by expr must be checked to be sure that it is an integer. If it is not, an attempt is
made to convert it to an integer, so that in

&trace := "1"

the value assigned to &trace is the integer 1, not the string "1".
A naive way to handle assignment to these keywords is to check every variable during as-

signment to see whether it is one that requires special processing. This would place a significant
computational burden on every assignment. Instead, Icon divides variables into two classes: ordi-
nary and trapped. Ordinary variables point to their values as illustrated previously and require no
special processing. Trapped variables, so called because their processing is "trapped," are distin-
guished from ordinary variables by a t flag. Thus, assignment only has to check a single flag to
separate the majority of variables from those that require special processing.

4.3.2.1 Trapped Variables

Icon Version 6 used the trapped variable approach to handle assignments to keywords, substrings
and table elements. Subsequent versions of Icon (and Unicon) no longer use trapped variables for
assignments to keywords: instead keyword variables have different types to “normal” variables.
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Trapped variables are still in use however to deal with the special processing required for assign-
ment to sub-strings and table elements — see section 12.2.

It is worth noting that the more conventional approach to handling the problem of assignment to
keywords and other special cases is to compile special code if the special case occurs an assignment
context. It is not always possible, however, to determine the context in which a variable is used in
Icon. Assume tb is a table and consider a procedure of the form

procedure tabvar(n)
...
return tb[n]
end

The semantics of Icon dictate that the result returned in this case should be a variable, not just
its value, so that it is possible to write an expression such as

tabvar(5) := 10

which has the effect of assigning the value 10 to tb[5].
The translator has no way of knowing that an assignment to the call tabvar(5) is equivalent to an

assignment to tb[5]. In fact, the translator cannot even determine that the value of tabvar will be a
function when the previous assignment is performed, much less that it will be the procedure given
earlier. The trapped-variable mechanism provides a way to handle uniformly all such situations.

4.3.2.2 Keyword Variables

Trapped variables are especially useful when dealing with cases where a variable sometimes needs
special treatment and sometimes not. But keywords always require special treatment, so they have
their own types, distinct from the everyday numerical and string types. The keyword type codes
are defined symbolically (values for other types are given in section 4.4.3).

#define T_Kywdint 20 /* integer keyword */
#define T_Kywdpos 21 /* keyword &pos */
#define T_Kywdsubj 22 /* keyword &subject */
#define T_Kywdwin 23 /* keyword &window */
#define T_Kywdstr 24 /* string keyword */
#define T_Kywdevent 25 /* keyword &eventsource, etc. */

There are four keyword variables that require special processing for assignment: &trace, &ran-
dom, &subject, and &pos. The keyword &random is treated in essentially the same way that &trace
is. Assignment to &subject requires a string value and has the side effect of assigning the value
1 to &pos. Assignment to &pos is even more complicated: not only must the value assigned be
an integer, but if it is not positive, it must also be converted to the positive equivalent with respect
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to the length of &subject. In any event, if the value in the assignment to &pos is not in the range
of &subject, the assignment fails. Dereferencing these keywords, on the other hand, requires no
special processing.

See section 12.2 for a further discussion of keyword variables

4.4 Descriptors and Blocks in C

Descriptors and blocks of data are described and depicted abstractly in the previous sections of this
chapter. In order to understand the implementation of some aspects of Icon, it is helpful to examine
the C code that actually defines and manipulates data.

The following sections illustrate typical C declarations for the structures used in the implemen-
tation of Icon. Some of the terminology and operations that appear frequently in the C code are
included as well. Other operations are introduced in subsequent chapters. as they are needed.

4.4.1 Descriptors

As mentioned in Sec. 4.1, for C compilers in which ints and pointers are the same size, the size
of a word is the size of an int, while if pointers are larger than ints, the size of a word is the size
of a long, or a long long. The difference between these models of memory is handled by typedefs
under the control of conditional compilation. Two constants that characterize the sizes are defined:
IntBits and WordBits. These sizes are used to select appropriate definitions for signed and unsigned
words. The fact that on some 64-bit C compilers a long is only 32 bits, while on others it is 64 bits,
complicates matters. The symbol LongLongWord indicates this situation.

#if IntBits != WordBits
#ifdef LongLongWord

typedef long long int word;
typedef unsigned long long int uword;

#else
typedef long int word;
typedef unsigned long uword;

#endif
#else /* IntBits != WordBits */
typedef int word;
typedef unsigned int uword;
#endif

A descriptor is declared as a structure:
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struct descrip { /* descriptor */
word dword; /* type field */
union {

word integr; /* integer value */
#ifdef DescriptorDouble

double realval;
#endif

char *sptr; /* pointer to character string */
union block *bptr; /* pointer to a block */
struct descrip *dptr; /* pointer to a descriptor */

} vword;
};

The v-word of a descriptor is a union that reflects its various uses: an integer, a pointer to a
string, a pointer to a block, or a pointer to another descriptor (in the case of a variable).

4.4.2 Blocks

Each block type has a structure declaration. For example. the declaration for record blocks is

struct b_record { /* record block */
word title; /* T_Record */
word blksize; /* size of block */
word id; /* identification number */
union block *recdesc; /* pointer to record constructor */
struct descrip fields[1]; /* fields */

};

Blocks for records vary in size, depending on the number of fields declared for the record type.
The size of 1 in

struct descrip fields[1];

is provided to satisfy the C compiler. Actual blocks for records are constructed at run time in a
region that is managed by Icon’s storage allocator. Such blocks conform to the previous declaration,
but the number of fields varies. The declaration provides a means of accessing portions of such
blocks from C.

The declaration for substring trapped-variable blocks is
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struct b_tvsubs { /* substring trapped variable block */
word title; /* T_Tvsubs */
word sslen; /* length of substring */
word sspos; /* position of substring */
struct descrip ssvar; /* variable that substring is from */

};

Note that the title fields of b_record and b_tvsubs contain type codes, as indicated in previous
diagrams. The second field of b_record is a size as mentioned previously, but b_tvsubs has no
size field, since all substring trapped-variable blocks are the same size, which therefore can be
determined from their type.

The block union given in the declaration of struct descrip consists of a union of all block types:

union block {
struct b_real realblk;
struct b_cset cset;
struct b_file file;
struct b_proc proc;
struct b_list list;
struct b_lelem lelem;
struct b_table table;
struct b_telem telem;
struct b_set set;
struct b_selem selem;
struct b_record record;
struct b_tvsubs tvsubs;
struct b_tvtbl tvtbl;
struct b_refresh refresh;
struct b_coexpr coexpr;
struct b_externl externl;
struct b_slots slots;
struct b_bignum bignumblk;

};

Note that there are several kinds of blocks in addition to those that correspond to source-
language data types.

4.4.3 Defined Constants

The type codes are defined symbolically:



59

#define T_Null 0
#define T_Integer 1
#define T_Lrgint 2
#define T_Real 3
#define T_Cset 4
#define T_File 5
#define T_Proc 6
#define T_Record 7
#define T_List 8
#define T_Lelem 9
#define T_Set 10
#define T_Selem 11
#define T_Table 12
#define T Telem 13
#define T_Tvtbl 14
#define T_Slots 15
#define T_Tvsubs 16
#define T_Refresh 17
#define T_Coexpr 18
#define T_External 19

The type codes in diagrams are abbreviated, as indicated by previous examples.
The defined constants for d-word flags are

n F_Nqual
p F_Ptr
v F_Var
t F_Tvar

The values of these flags depend on the word size of the computer.
The d-words of descriptors are defined in terms of flags and type codes:

#define D_Null (T_Null | F_Nqual)
#define D_Integer (T_Integer | F_Nqual)
#define D_Lrgint (T_Lrgint | F_Ptr | F_Nqual)
#define D_Real (T_Real | F_Ptr | F_Nqual)
#define D_Cset (T_Cset | F_Ptr | F_Nqual)
#define D_File (T_File | F_Ptr | F_Nqual)
#define D_Proc (T_Proc | F_Ptr | F_Nqual)
#define D_List (T_List | F_Ptr | F_Nqual)
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#define D_Table (T_Table | F_Ptr | F_Nqual)
#define D_Set (T_Set | F_Ptr | F_Nqual)
#define D_Selem (T_Selem | F_Ptr | F_Nqual)
#define D_Record (T_Record | F_Ptr | F_Nqual)
#define D_Telem (T_Telem | F_Ptr | F_Nqual)
#define D_Lelem (T_Lelem | F_Ptr | F_Nqual)
#define D_Tvsubs (T_Tvsubs | D_Tvar)
#define D_Tvtbl (T Tvtbl | D_Tvar)
#define D_Coexpr (T_Coexpr | F_Ptr | F_Nqual)
#define D_Refresh (T_Refresh | F_Ptr | F_Nqual)
#define D_Var (F_Var | F_Nqual | F_Ptr)
#define D_Tvar (D_Var | F_Tvar)

As indicated previously, flags, type codes, and d-words are distinguished by the prefixes F_,
T_, and D_, respectively.

4.4.4 RTL Coding

Since the optimizing compiler was introduced in versions 8 and 9 of Icon, the routines for the run-
time system use an extended C syntax called RTL (for Run-Time Language) that encodes the type
information for arguments and results. Some of these are illustrated by the RTL function for the
Icon operator *x, which produces the size of x:

operator{1} * size(x)
abstract { return integer }
type_case x of {

string: inline { return C_integer StrLen(x); }
list: inline { return C_integer BlkD(x,List)->size; }
table: inline { return C_integer BlkD(x,Table)->size; }
set: inline { return C_integer BlkD(x,Set)->size; }
cset: inline {

register word i = BlkD(x,Cset)->size;
if (i < 0) i = cssize(&x);
return C_integer i;
}

...
default: {

/*
* Try to convert it to a string.
*/



61

if !cnv:tmp_string(x) then
runerr(112, x); /* no notion of size */

inline {
return C_integer StrLen(x);
}

}
}

end

operator is an RTL construct that performs several operations. One of these operations is to
provide a C function declaration. Since the function is called by the interpreter, the header is
somewhat different from what it would be if size were called directly. The details are described in
Chapter 8.

The arguments of the Icon operation are referred to via named descriptors, such as x. The result
that is produced is also a descriptor.

RTL extends C’s return statement to include type information, with which the d-word of the
return value is set to D_lnteger, since the returned value is a C_integer. Next, the type_case selects
different branches of code depending on the type of x. In the generated code there is a test to
determine if descriptor x holds a qualifier. Qual() is a macro that is defined as

#define Qual(d) (!((d).dword & F_Nqual))

If x is a qualifier, its length is placed in the v-word of the return value descriptor, using the
macros IntVal and StrLen, which are defined as

#define IntVal(d) ((d).vword.integr)
#define StrLen(d) ((d).dword)

If x is not a qualifier, then the size depends on the type. The macro Type() isolates the type code

#define Type(d) ((d).dword & TypeMask)

where the value of TypeMask is 63, providing considerable room for additions to Icon’s internal
types.

For most Icon types that are represented by blocks, their source-language size is contained in
their size field. The macro BlkLoc() accesses a pointer in the v-field of a descriptor and is defined
as

#define BlkLoc(d) ((d).vword.bptr)

A more specialized macro BlkD() wraps uses of BlkLoc() and subsequent union member access,
allowing descriptor-block consistency to be verified at run-time if desired.

If the type is not one of those given, the final task is an attempt to convert x to a string. The
RTL expression cnv:tmp_string() does this, using local temporary buffer. The value of x is changed
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accordingly. A fixed-sized buffer can be used, since there is a limit to the size of a string that can
be obtained by converting other types. This limit is 256, which is reached only for conversion
of &cset. The conversion may fail, as for *&null, which is signaled by the return value 0 from
cnv:tmp_string(). In this case, program execution is terminated with a run-time: error message,
using runerr(). If the conversion is successful, the size is placed in the v-word of the result, as is the
case if x was a qualifier originally.

RETROSPECTIVE: Descriptors provide a uniform way of representing Icon values and vari-
ables. Since descriptors for all types of data are the same size, there are no problems with assigning
different types of values to a variable—they all fit.

The importance of strings is reflected in the separation of descriptors into two classes—
qualifiers and nonqualifiers—by the n flag. The advantages of the qualifier representation for strings
are discussed in Chapter 5.

It is comparatively easy to add a new type to Icon. A new type code is needed to distinguish
it from other types. If the possible values of the new type are small enough to fit into the v-word,
as is the case for integers, no other data is needed. For example, the value of a character data type
could be contained in its descriptor. For types that have values that are too large to fit into a v-word,
pointers to blocks containing the data are placed in the v-words instead. Lists, sets, and tables are
examples of data types that are represented this way. See Chapters 6 and 7.

EXERCISES
4.1 Give examples of Icon programs in which heterogeneous aggregates are used in significant
ways.
4.2 Design a system of type declarations for Icon so that the translator could do type checking.
Give special consideration to aggregates, especially those that may change in size during program
execution. Do this from two perspectives: (a) changing the semantics of Icon as little as possible,
and (b) maximizing ,the type checking that can be done by the translator at the expense of flexibility
in programming.
4.3 Suppose that functions in Icon were not first-class values and that their meanings were bound
at translation time. How much could the translator do in the way of error checking?
4.4 Compile a list of all Icon functions and operators. Are there any that do not require argument
type checking? Are there any that require type checking but not conversion? Identify those that
are polymorphic. For the polymorphic ones, identify the different kinds of computations that are
performed depending on the types of the arguments.
4.5 Compose a table of all type checks and conversions that are required for Icon functions and
operators.
4.6 To what extent would the implementation of Icon be simplified if automatic type conversion
were not supported? How would this affect the programmer?
4.7 Why is it desirable for string qualifiers not to have flags and for all other kinds of descriptors to
have flags indicating they are not qualifiers, rather than the other way around?
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4.8 Is the n flag that distinguishes string qualifiers from all other descriptors really necessary? If
not, explain how to distinguish the different types of descriptors without this flag.
4.9 On computers with extremely limited address space, two-word descriptors may be impractically
large. Describe how one-word descriptors might be designed, discuss how various types might be
represented, and describe the ramifications for storage utilization and execution speed.
4.10 Identify the diagrams in this chapter that would be different if they were drawn for a computer
with 16-bit words. Indicate the differences.
4.11 There is nothing in the nature of keywords that requires them to be processed in a special way
for assignment but not for dereferencing. Invent a new keyword that is a variable that requires pro-
cessing when it is dereferenced. Show how to generalize the keyword trapped-variable mechanism
to handle such cases.
4.12 List all the syntactically distinct cases in which the translator can determine whether a keyword
variable is used in an assignment or dereferencing context.
4.13 What would be gained if special code were compiled for those cases in which the context for
keyword variables could be determined?
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Chapter 5

Strings and Csets

PERSPECTIVE: Several aspects of strings as a language feature in Icon have a strong influence on
how they are handled by the implementation. First of all, strings are the most frequently used type
of data in the majority of Icon programs. The number of different strings and the total amount of
string data often are large. Therefore, it is important to be able to store and access strings efficiently.

Icon has many operations on strings—nearly fifty of them. Some operations, such as determin-
ing the size of a string, are performed frequently. The efficiency of these operations is an important
issue and influences, to a considerable extent, how strings are represented.

Icon strings may be very long. Although some limitation on the maximum length of a string
may be acceptable as a compromise with the architecture of the computer on which Icon is imple-
mented (and hence considerations of efficiency), this maximum must be so large as to be irrelevant
for most Icon programs.

String lengths are determined dynamically during program execution, instead of being specified
statically in declarations. Much of the advantage of string processing in Icon over other program-
ming languages comes from the automatic management of storage for strings.

Any of the 256 8-bit ASCII characters can appear in an Icon string. Even the “null” character
is allowed.

Several operations in Icon return substrings of other strings. Substrings tend to occur frequently,
especially in programs that analyze (as opposed to synthesize) strings.

Strings in Icon are atomic— there are no operations in Icon that change the characters in existing
strings. This aspect of Icon is not obvious; in fact, there are operations that appear to change the
characters in strings. The atomic nature of string operations in Icon simplifies its implementation
considerably. For example, assignment of a string value to a variable need not (and does not) copy
the string.

The order in which characters appear is an essential aspect of strings. There are many situations
in Icon, however, where several characters have the same status but where their order is irrelevant.
For example, the concepts of vowels and punctuation marks depend on set membership but not on
order. Csets are provided for such situations. Interestingly, many computations can be performed
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using csets that have nothing to do with the characters themselves (Griswold and Griswold 1983,
pp. 181-191).

5.1 Strings

5.1.1 Representation of Strings

Although it may appear natural for the characters of a string to be stored in consecutive bytes, this
has not always been so. On earlier computer architectures without byte addressing and character
operations, some string-manipulation languages represented strings by linked lists of words, each
word containing a single character. Such a representation seems bizarre for modem computer
architectures and obviously consumes a very large amount of memory — an intolerable amount for
a language like Icon.

The C programming language represents strings (really arrays of characters) by successive bytes
in memory, using a zero (null) byte to indicate the end of a string. Consequently, the end of a
string can be determined from the string itself, without any external information. On the other
hand, determining the length of a string, if it is not already known, requires indexing through it,
incrementing a counter until a null byte is found. Furthermore, and very important for a language
like Icon, substrings (except terminal ones) cannot occur within strings, since every C string must
end with a null byte.

Since any character can occur in an Icon string, it is not possible to use C’s null-termination
approach to mark ends of strings. Therefore, there is no way to detect the end of a string from the
string itself, and there must be some external way to determine where a string ends. This consid-
eration provides the motivation for the qualifier representation described in the last chapter. The
qualifier provides information, external to the string itself, that delimits the string by the address
of its first character and its length. Such a representation makes the computation of substrings fast
and simple—and, of course, determining the length of a string is fast and independent of its length.

Note that C-style strings serve perfectly well as Icon-style strings; the null byte at the end of a
C-style string can be ignored by Icon. This allows strings produced by C functions to be used by
Icon. The converse is not true; in order for an Icon string to be used by C, a copy must be made
with a null byte appended at the end.

Some strings are compiled into the run-time system and others, such as strings that appear
as literals in a program, are contained in icode files that are loaded into memory when program
execution begins. During program execution, Icon strings may be stored in work areas (usually
referred to as "buffers"). Most newly created strings, however, are allocated in a common string
region.

As source-language operations construct new strings, their characters are appended to the end
of those already in the string region. The amount of space allocated in the string region typically in-
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creases during program execution until the region is full, at which point it is compacted by garbage
collection, squeezing out characters that are no longer needed. See Chapter 11 for details.

In the previous chapter, the string to which a qualifier points is depicted by an arrow followed
by the string. For example, the string "the" is represented by the qualifier

3
- "the"

The pointer to "the" is just a notational convenience. A more accurate representation is

3

?
... t h e ...

The actual value of the v-word might be 0x569a (hexadecimal), where the character t is at
memory location 0x569a, the character h is at location 0x569b, and the character e is at location
0x569c.

5.1.2 Concatenation

In an expression such as

s := "hello"

the string "hello" is contained in data provided as part of the icode file, and a qualifier for it is
assigned to s; no string is constructed. Some operations that produce strings require the allocation
of new strings. Concatenation is a typical example:

s1 := "ab" || "cdef"

In this expression, the concatenation operation allocates space for six characters, copies the two
strings into this space, and produces a qualifier for the result:

6s1

?
... a b c d e f ...

This qualifier then becomes the value of s1.
There are important optimizations in concatenation. If the first argument in a concatenation is

the last string in the string region, the second argument is simply appended to the end of the string
region. Thus, operations of the form

s := s || expr
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perform less allocation than operations of the form

s := expr || s

Similarly, if the strings being concatenated are already adjacent, no concatenation need be per-
formed. Except for these optimizations, no string construction operation attempts to use another
instance of a string that may exist somewhere else in the string region. As a result,

s1 := "ab" || "c"
s2 := "a" || "bc"

produce two distinct strings:

3s2

?

3s1

?
... a b c a b c ...

The RTL code for the concatenation operation is

operator{1} || cater(x,y)
if !cnv:string(x) then

runerr(103, x)
if !cnv:string(y) then

runerr(103, y)

abstract {
return string
}

body {
CURTSTATE();

/*
* Optimization 1: The strings to be concatenated are
* already adjacent in memory; no allocation is required.
*/

if (StrLoc(x) + StrLen(x) == StrLoc(y)) {
StrLoc(result) = StrLoc(x);
StrLen(result) = StrLen(x) + StrLen(y);
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return result;
}

else if ((StrLoc(x) + StrLen(x) == strfree)
&& (DiffPtrs(strend,strfree) > StrLen(y))) {

/*
* Optimization 2: The end of x is at the end of the string space.
* Hence, x was the last string allocated and need
* not be re-allocated. y is appended to the string
* space and the result is pointed to the start of x.
*/

result = x;
/*
* Append y to the end of the string space.
*/
Protect(alcstr(StrLoc(y),StrLen(y)), runerr(0));
/*
* Set the length of the result and return.
*/
StrLen(result) = StrLen(x) + StrLen(y);
return result;

}

/*
* Otherwise, allocate space for x and y, and copy them
* to the end of the string space.
*/
Protect(StrLoc(result) = alcstr(NULL, StrLen(x) + StrLen(y)), runerr(0));
memcpy(StrLoc(result), StrLoc(x), StrLen(x));
memcpy(StrLoc(result) + StrLen(x), StrLoc(y), StrLen(y));

/*
* Set the length of the result and return.
*/
StrLen(result) = StrLen(x) + StrLen(y);
return result;
}

end

The function strreq(n) assures that there are at least n bytes available in the allocated string
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region. See Chapter 11 for details. The function alcstr(s, n) allocates n characters and copies s to
that space. The global variable strfree points to the beginning of the free space at the end of the
allocated string region.

5.1.3 Substrings

Many string operations do not require the allocation of a new string but only produce new qualifiers.
For example, if the value of s1 is "abcdef", the substring formed by

s2 := s1[3:6]

does not allocate a new string but only produces a qualifier that points to a substring of s1:

3s2

?

6s1

?
... a b c d e f ...

In order for Icon string values to be represented in memory by substrings, it is essential that
there be no Icon operation that changes the characters inside a string. As mentioned earlier, this is
the case, although it is not obvious from a cursory examination of the language. C, on the other
hand, allows the characters in a string to be changed. The difference is that C considers a string to
be an array of characters and allows assignment to the elements of the array, while Icon considers a
string to be an indivisible atomic object. It makes no more sense in Icon to try to change a character
in a string than it does to try to change a digit in an integer. Thus, if

i := j

and

j := j + 1

the value of i does not change as a result of the subsequent assignment to j. So it is with strings in
Icon.

Admittedly, there are operations in Icon that appear to change the characters in a string. For
example,

s1[3] := "x"

gives the appearance of changing the third character in s1 to "x". However, this expression is simply
shorthand for

s1 := s1[1:3] || "x" || s1[4:0]
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A new string is created by concatenation and a new qualifier for it is assigned to s1, as shown
by

6s1

?

3s2

?
... a b c d e f a b x d e f ...

Of course, the length of the string may be increased or decreased by assignment to a substring,
as in

s1[3] := "xxx"
s1 [2:5] := ""

5.1.4 Assignment to Subscripted Strings

Expressions such as x[i] and x[i:j] represent a particular challenge in the implementation of Icon.
In the first place, the translator cannot determine the type of x. In the case of x[i], there are four
basic types that x may legitimately have: string, list, table, and record. Of course, any type that can
be converted to a string is legitimate also. Unfortunately, the nature of the operation, not just the
details of its implementation, depends on the type. For strings,

s1 [3] := s2

replaces the third character of s1 by s2 and is equivalent to concatenation, as described previously.
For lists, tables, and records,

x[3] := y

changes the third element of x to y — quite a different matter (see Exercise 5.5).
This problem is pervasive in Icon and only needs to be noted in passing here. The more serious

problem is that even if the subscripted variable is a string, the subscripting expression has different
meanings, depending on the context in which it appears.

If s is a variable, then s[i] and s[i:j] also are variables. In a dereferencing context, such as

write(s[2:5])

the result produced by s[2:5] is simply a substring of s, and the subscripting expression produces
the appropriate qualifier.

Assignment to a subscripted string, as in

s[2:5] := "xxx"
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is not at all what it appears to be superficially. Instead, as already noted, it shorthand for an assign-
ment to s:

s := s[1] || "xxx" || s[6:0]
If the translator could determine whether a subscripting expression is used in dereferencing or

assignment context, it could produce different code for the two cases. As mentioned in Sec. 4.3.2,
however, the translator cannot always make this determination. Consequently, trapped variables
are used for subscripted strings much in the way they were used for keywords in Icon Version 6.
For example, if the value of s is "abcdef", the result of evaluating the subscripting expression s[2:5]
is a substring trapped variable that has the form

npvs

6

npv
-

3
2

length
offset

tvsubs
tvsubsnptv

-

s[2:5]

6
- "abcdef"

Note that both the variable for s and the variable in the substring trapped-variable block point
to the same value. This makes it possible for assignment to the substring trapped variable to change
the value of s.

The length and offset of the substring provide the necessary information either to produce a
qualifier for the substring, in case the subscripting expression is dereferenced, or to construct a
new string in case an assignment is made to the subscripting expression. For example, after an
assignment such as

s[2:5] := "x"
the situation is

npvs

6

npv
-

1
2

length
offset

tvsubs
tvsubsnptv

-

s[2:5]

6
- "axef"
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Note that the value of s has changed. The length of the subscripted portion of the string has
been changed to correspond to the length of the string assigned to it. This reflects the fact that
subscripting identifies the portions of the string before and after the subscripted portion ("a" and
"ef", in this case). In the case of a multiple assignment to a subscripted string, only the original
subscripted portion is changed. Thus, in

(s[2:5] := "x") := "yyyyy"

the final value of s is "ayyyyyef".

5.1.5 Mapping

String mapping is interesting in its own right, and the RTL function that implements it illustrates
several aspects of string processing:

function{1} map(s1,s2,s3)
/*
* s1 must be a string; s2 and s3 default to (string
* conversions of) &ucase and &lcase, respectively.
*/
if !cnv:string(s1) then

runerr(103,s1)
...
abstract {

return string
}

body {
register int i;
register word slen;
register char *str1, *str2, *str3;

#ifndef Concurrent
static char maptab[256];

#endif /* Concurrent */
CURTSTATE();

/*
* Default is here, conversion only if cached maptab fails
*/
if (is:null(s2))

s2 = ucase;
/*
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* Short-cut conversions of &lcase and &ucase.
*/

else {
struct descrip _k_lcase_, _k_ucase_;
Klcase(&_k_lcase_);
Kucase(&_k_ucase_);
if (s2.dword == D_Cset) {

if (BlkLoc(s2) == BlkLoc(_k_lcase_)) {
s2 = lcase;

}
else if (BlkLoc(s2) == BlkLoc(_k_ucase_)) {

s2 = ucase;
}

}
}

if (is:null(s3))
s3 = lcase;

/*
* Short-cut conversions of &lcase and &ucase.
*/

else {
struct descrip _k_lcase_, _k_ucase_;
Klcase(&_k_lcase_);
Kucase(&_k_ucase_);
if (s3.dword == D_Cset) {

if (BlkLoc(s3) == BlkLoc(_k_lcase_)) {
s3 = lcase;
}

else if (BlkLoc(s3) == BlkLoc(_k_ucase_)) {
s3 = ucase;
}

}
}

/*
* If s2 and s3 are the same as for the last call of map,
* the current values in maptab can be used. Otherwise, the
* mapping information must be recomputed.
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*/
if (!EqlDesc(maps2,s2) || !EqlDesc(maps3,s3)) {

maps2 = s2;
maps3 = s3;

#if !COMPILER
if (!cnv:string(s2,s2))

runerr(103,s2);
if (!cnv:string(s3,s3))

runerr(103,s3);
#endif /* !COMPILER */

/*
* s2 and s3 must be of the same length
*/

if (StrLen(s2) != StrLen(s3))
runerr(208);

/*
* The array maptab is used to perform the mapping. First,
* maptab[i] is initialized with i for i from 0 to 255.
* Then, for each character in s2, the position in maptab
* corresponding to the value of the character is assigned
* the value of the character in s3 that is in the same
* position as the character from s2.
*/

str2 = StrLoc(s2);
str3 = StrLoc(s3);
for (i = 0; i <= 255; i++)

maptab[i] = i;
for (slen = 0; slen < StrLen(s2); slen++)

maptab[str2[slen]&0377] = str3[slen];
}

slen = StrLen(s1);

if (slen == 0) {
return emptystr;

}
else if (slen == 1) {
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char c = maptab[*(StrLoc(s1)) & 0xFF];
return string(1, (char *)&allchars[FromAscii(c) & 0xFF]);

}

/*
* The result is a string the size of s1; create the result
* string, but specify no value for it.
*/
StrLen(result) = slen;
Protect(StrLoc(result) = alcstr(NULL, slen), runerr(0));
str1 = StrLoc(s1);
str2 = StrLoc(result);

/*
* Run through the string, using values in maptab to do the
* mapping.
*/
while (slen-- > 0)

*str2++ = maptab[(*str1++)&0377];

return result;
}

end

The mapping is done using the character array maptab. This array is set up by first assigning
every possible character to its own position in maptab and then replacing the characters at positions
corresponding to characters in s2 by the corresponding characters in s3. Note that if a character
occurs more than once in s2, its last (rightmost) correspondence with a character in s3 applies.

To avoid rebuilding maptab unnecessarily, this step is bypassed if map() is called with the same
values of s2 and s3 as in the previous call. The global (in Unicon, thread-local) variables maps2
and maps3 are used to hold these "cached" values. The macro EqlDesc(d1,d2) tests the equivalence
of the descriptors d1 and d2.

The function map() is an example of a function that defaults null-valued arguments. Omitted
arguments are supplied as null values. The defaults for s2 and s3 are &ucase and &lcase, respec-
tively. Consequently,

map(s)
is equivalent to

map(s, &ucase, &lcase)
The macro ChkNull(d) tests whether or not d is null. The values of &ucase and &lcase are in

the global constants ucase and lcase.
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5.2 Csets

Since Icon uses 8-bit characters, regardless of the computer on which it is implemented, there are
256 different characters that can occur in csets. A cset block consists of the usual title containing
the cset type code followed by a word that contains the number of characters in the cset. Next,
there are words containing a total of 256 bits. Each bit represents one character, with a bit value of
1 indicating that the character is present in the cset and a bit value of 0 indicating it is absent. An
example is the value of the keyword &ascii:

000000 ... 000000
000000 ... 000000

000000 ... 000000
000000 ... 000000

111111 ... 111111
111111 ... 111111

111111 ... 111111
111111 ... 111111

cset
128 size of cset

csetnp
-

The first 128 bits are 1, since these are the bits that correspond to those in ASCII character set.
The C structure for a cset block is

struct b_cset { /* cset block */
word title; /* T_Cset */
word size; /* size of cset */
unsigned int bits [CsetSize]; /* array of bits */

};

where CsetSize is the number of words required to make up a total of 256 bits. CsetSize is 8 on a
computer with 32-bit words and 4 on a computer with 64-bit words. Few programs use the size of
Csets and the calculation of the size is expensive. The size field is set initially to -1 (by the routine
alccset()) and the actual size is only computed if it is needed subsequently.

Cset operations are comparatively straightforward. The characters in a cset are represented by
a bit vector that is divided into words to accommodate conventional computer architectures. For
example, the C code for cset complementation is

operator{1} ˜ compl(x)
/*
* x must be a cset.
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*/
if !cnv:tmp_cset(x) then

runerr(104, x)

abstract {
return cset
}

body {
register int i;
struct b_cset *cp, *cpx;

/*
* Allocate a new cset and then copy each cset word from
* x into the new cset words, complementing each bit.
*/

Protect(cp = alccset(), runerr(0));
/* must come after alccset() since BlkLoc(x) could move */
cpx = (struct b_cset *)BlkLoc(x);
for (i = 0; i < CsetSize; i++)

cp->bits[i] = ˜cpx->bits[i];
return cset(cp);
}

end

RETROSPECTIVE: The central role of strings in Icon and the nature of the operations performed
on them leads to a representation of string data that is distinct from other data. The qualifier
representation is particularly important in providing direct access to string length and in allowing
the construction of substrings without the allocation of additional storage. The penalty paid is that
a separate test must be performed to distinguish strings from all other kinds of values.

The ability to assign to subscripted strings causes serious implementation problems. The
trapped-variable mechanism provides a solution, but it does so at considerable expense in the com-
plexity of code in the run-time system as well as storage allocation for trapped-variable blocks.
This expense is incurred even if assignment is not made to a subscripted string.

EXERCISES
5.1 What are the ramifications of Icon’s use of the 256-bit ASCII character set, regardless of the
“native” character set of the computer on which Icon is implemented?
5.2 Catalog all the operations on strings in Icon and point out any that might cause special imple-
mentation problems. Indicate the aspects of strings and string operations in Icon that are the most
important in terms of memory requirements and processing speed.
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5.3 List all the operations in Icon that require the allocation of space for the construction of strings.
5.4 It has been suggested that it would be worth trying to avoid duplicate allocation of the same
string by searching the string region for a newly created string to see if it already exists before
allocating the space for it. Evaluate this proposal.
5.5 Consider the following four expressions:

s1 [i] := s2
s1 [i+:1] := s2
a1 [i] := a2
a1 [i+:1] := a2

where s1 and s2 have string values and a1 and a2 have list values. Describe the essential differences
between the string and list cases. Explain why these differences indicate flaws in language design.
Suggest an alternative.
5.6 The substring trapped-variable concept has the advantage of making it possible to handle all
the contexts in which string-subscripting expressions can occur. It is expensive, however, in terms
of storage utilization. Analyze the impact of this feature on the performance of “typical” Icon
programs.
5.7 Since the contexts in which most subscripting expressions occur can be determined, describe
how to handle these without using trapped variables.
5.8 If a subscripting expression is applied to a result that is not a variable, it is erroneous to use
such an expression in an assignment context. In what situations can the translator detect this error?
Are there any situations in which a subscripting expression is applied to a variable but in which the
expression cannot be used in an assignment context?
5.9 There are some potential advantages to unifying the keyword and substring trapped-variable
mechanisms into a single mechanism in which all trapped variables would have pointers to func-
tions for dereferencing and assignment. What are the disadvantages of such a unification?
5.10 Presumably, it is unlikely for a programmer to have a constructive need for the polymorphic
aspect of subscripting expressions. Or is it? If it is unlikely, provide a supporting argument. On
the other hand, if there are situations in which this capability is useful, describe them and give
examples.
5.11 In some uses of map(s1, s2, s3), s1 and s2 remain fixed while s3 varies (Griswold 1980b).
Devise a heuristic that takes advantage of such usage.
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Chapter 6

Lists

PERSPECTIVE:Most programming languages support some form of vector or array data type in
which elements can be referenced by position. Icon’s list data type fills this need, but it differs from
similar types in many languages in that Icon lists are constructed during program execution instead
of being declared during compilation. Therefore, the size of a list may not be known until run time.

Icon’s lists are data objects. They can be assigned to variables and passed as arguments to
functions. They are not copied when this is done; in fact, a value of type list is simply a descriptor
that points to the structure that contains the list elements. These aspects of lists are shared by
several other Icon data types and do not add anything new to the implementation. The attribute of
lists that presents the most challenging implementation problem is their ability to grow and shrink
by the use of stack and queue access mechanisms.

Lists present different faces to the programmer, depending on how they are used. They may be
static vectors referenced by position or they may be dynamic changing stacks or queues. It might
seem that having a data structure with such apparently discordant access mechanisms would be
awkward and undesirable. In practice, Icon’s lists provide a remarkably flexible mechanism for
dealing with many common programming problems. The two ways of manipulating lists are rarely
intermixed. When both aspects are needed, they usually are needed at different times. For example,
the number of elements needed in a list often is not known when the list is created. Such a list can
be created with no elements, and the elements can be pushed onto it as they are produced. Once
such a list has been constructed, it may be accessed by position with no further change in its size.

6.1 Structures for Lists

The fusion of vector, stack, and queue organizations is reflected in the implementation of Icon by
relatively complicated structures that are designed to provide a reasonable compromise between
the conflicting requirements of the different access mechanisms.

A list consists of a fixed-size list-header block, which contains the usual title, the current size

81
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of the list (the number of elements in it), and block pointers that point to the first and last blocks
on a doubly-linked chain of list-element blocks that contain the actual list elements. List-element
blocks vary in size.

A list-element block contains the usual title, the size of the block in bytes, three words used to
determine the locations of elements in the list-element block and block pointers that point to the
next and previous list-element blocks, if any. A null pointer (in Unicon, a pointer back to the list
header block) indicates the absence of a pointer to another list-element block. Following this data,
there are slots for elements. Slots always contain valid descriptors, even if they are not used to hold
list elements.

The structure declarations for list-header blocks and list-element blocks are

struct b_list { /* list-header block */
word title; /* T_List */
word size; /* current list size */
word id; /* identification number */
union block *listhead; /* first list-element block * /
union block *listtail; /* last list-element block * /

};
struct b_lelem { /* list-element block */

word title; /* T_Lelem */
word blksize; /* size of block */
word nslots; /* total number of slots */
word first; /* index of first used slot */
word nused; /* number of used slots */
union block *listprev; /* previous list-element block */
union block *listnext; /* next list-element block */
struct descrip lslots[1]; /* array of slots */

};

When a list is created, either by

list(n, x)

or by

[x1 ,x2, ..., xn]

there is only one list-element block. Other list-element blocks may be added to the chain as the
result of pushs or puts.

List-element blocks created by enumeration (or a call to the list function with an integer first
parameter) have a minimum number of slots. This allows some expansion room for adding elements
to lists, such as the empty list, that are small initially. The minimum number of slots is given by
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MinListSlots, which normally is eight. In the examples that follow, the value of MinListSlots is
assumed to be four in order to keep the diagrams to a manageable size. Note that is possible to
create a list element block with fewer slots – for example by sorting a record or converting a set to
a list (Unicon only) – in the limit, the List-element block can have no slots at all.

The code for the list function is

function{1} list(n, x)
if is:set(n) then {

abstract {
return new list(store[type(n).set_elem])

}
body {

struct descrip d;
cnv_list(&n, &d); /* can’t fail, we know n is a set */
return d;
}

}
else {

if !def:C_integer(n, 0L) then
runerr(101, n)

abstract {
return new list(type(x))
}

tended struct b_list *hp;
register word i, size;
word nslots;
register struct b_lelem *bp; /* doesnt need to be tended */

nslots = size = n;

/*
* Ensure that the size is positive and that the
* list-element block has at least MinListSlots slots.
*/
if (size < 0) {

irunerr(205, n);
errorfail;
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}
if (nslots == 0)

nslots = MinListSlots;
/*
* Allocate the list-header block and a list-element block.
* nslots is the number of slots in the list-element
* block while size is the number of elements in the list.
*/

Protect(hp = alclist_raw(size, nslots), runerr(0));
bp = (struct b_lelem *)hp->listhead;

/*
* Initialize each slot.
*/

for (i = 0; i < size; i++)
bp->lslots[i] = x;

Desc_EVValD(hp, E_Lcreate, D_List);

/*
* Return the new list.
*/

return list(hp);
}

}
end

The data structures produced for a list are illustrated by the result of evaluating

a := list(1, 4)

which produces a one-element list containing the value 4:
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nulln

0
slot 3

nulln

0
slot 2

nulln

0
slot 1

integern

4
slot 0

hdr / ø next list-element block

Unicon replaces the
null pointer used by
Icon with a pointer
to the list header
block.

�

?

hdr / ø previous list-element block

0
1

first slot used
number of slots used

60
4

size of block
number of slots in block

lelem

first list-element block (head)
last list-element block(tail)

�

�

-

id

list
1 number of elements in the list

listnp
-

Data Structures for list(1,4)
Note that there is only one list-element block and that the slot indexing in the block is zero-

based. Unused slots contain null values that are logically inaccessible.

6.2 Queue and Stack Access

Elements in a list-element block are stored as a doubly-linked circular queue. If an element is added
to the end of the list a, as in

put(a, 5)

the elements of the list are 4 and 5. The value is added to the ’"end" of the last list-element block,
assuming there is an unused slot (as there is in this case). The code in put() to do this is

/*
* Point hp to the list-header block and bp to the last
* list-element block.
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*/
hp = (struct b_list *)BlkLoc(x);
bp = (struct b_lelem *) hp->listtail;
/*
* If the last list-element block is full, allocate a new
* list-element block, make it the first list-element block,
* and make it the next block of the former last list-element
* block.
*/

if (bp->nused >= bp->nslots) {
/*
* Set i to the size of block to allocate.
*/

i = hp->size / two;
if (i < MinListSlots)

i = MinListSlots;
#ifdef MaxListSlots

if (i > MaxListSlots)
i = MaxListSlots;

#endif /* MaxListSlots */
/*

* Allocate a new list element block. If the block
* can’t be allocated, try smaller blocks.
*/
while ((bp = alclstb(i, (word)0, (word)0)) == NULL) {

i /= 4;
if (i < MinListSlots)

runerr(0);
}

hp->listtail->lelem.listnext = (union block *) bp;
bp->listprev = hp->listtail;
hp->listtail = (union block *) bp;

}
/*
* Set i to position of new last element and assign val to
* that element.
*/

i = bp->first + bp->nused;
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if (i >= bp->nslots)
i -= bp->nslots;

bp->lslots[i] = dp[val];

/*
* Adjust block usage count and current list size.
*/
bp->nused++;
hp->size++;
}

/*
* Return the list.
*/
return x;
}

end

The effect on the list-header block and list-element block is:

nulln

0
slot 3

nulln

0
slot 2

integern

5
slot 1

integern

4
slot 0

hdr / ø next list-element block
hdr / ø previous list-element block

0
2

first slot used
number of slots used

60
4

size of block
number of slots in block

lelemhead
tail

6
-

id

list
2 number of elements in the list

�

-

(Unicon) pointer to list header

The List Element-Block after a put
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Note that the increase in the number of elements in the header block and in the number of slots
used in the list-element block.

If an element is added to the beginning of a list, as in

push(a,3)

the elements of the list are 3, 4, and 5. The new element is put at the ’"beginning" of the first
list-element block. The result is

integern

3
slot 3

nulln

0
slot 2

integern

5
slot 1

integern

4
slot 0

hdr / ø next list-element block
hdr / ø previous list-element block

3
3

first slot used
number of slots used

60
4

size of block
number of slots in block

lelemhead
tail

6
-

id

list
3 number of elements in the list

�

-

(Unicon) pointer to list header

The List Element-Block after a push
Note that the "beginning," which is before the first physical slot in the list-element block, is

the last physical slot. The locations of elements that are in a list-element block are determined by
the three integers at the head of the list element block. "Removal" of an element by a pop, get, or
pull does not shorten the list-element block or overwrite the element; the element merely becomes
inaccessible.

If an element is added to a list and no more slots are available in the appropriate list-element
block, a new list-element block is allocated and linked in. The size of the new block is half the
number of elements in the entire list before expansion or MinListSlots, whichever is greater. Unicon
also imposes an upper limit of MaxListSlots on the size of the new block. However, if there is not
enough memory to allocate a list-element block of the desired size, the size is reduced to fit into
available memory. For example, following evaluation of

push(a,2)
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push(a,1)

the list elements are 1,2,3,4, and 5. The resulting structures are

integern

1
slot 3

nulln

0
slot 2

nulln

0
slot 1

nulln

0
slot 0
next list-element block�

ø previous list-element block

3
1

first slot used
number of slots used

60
4

size of block
number of slots in block

lelem

head
tail

6

-

id

list
5

?

�

-

integern

3
slot 3

integern

2
slot 2

integern

5
slot 1

integern

4
slot 0

hdr / ø next list-element block

6

- previous list-element block

2
4

first slot used
number of slots used

60
4

size of block
number of slots in block

lelem-

6

(Unicon) pointer to list header

The Addition of a List-Element Block
As elements are removed from a list by pop (which is synonymous with get) or pull. The indices

in the appropriate list-element block are adjusted. The code for pop is
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int c_get(hp, res)
struct b_list *hp;
struct descrip *res;
{

register word i;
register struct b_lelem *bp;

/*
* Fail if the list is empty.
*/

if (hp->size <= 0)
return 0;

/*
* Point bp at the first list block. If the first block has
* no elements in use, point bp at the next list block.
*/

bp = (struct b_lelem *) hp->listhead;
if (bp->nused <= 0) {

bp = (struct b_lelem *) bp->listnext;
hp->listhead = (union block *) bp;
bp->listprev = NULL;
}

/*
* Locate first element and assign it to result for return.
*/

i = bp->first;
*res = bp->lslots[i];

/*
* Set bp->first to new first element, or 0 if the block is
* now empty. Decrement the usage count for the block and
* the size of the list.
*/

if (++i >= bp->nslots)
i = 0;

bp->first = i;
bp->nused--;
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hp->size--;
return 1;

}

where the c_get() helper function is invoked from RTL as follows:

function{0,1} get_or_pop(x)
if !is:list(x) then

runerr(108, x)

abstract {
return store[type(x).lst_elem]
}

body {
if (!c_get((struct b_list *)BlkLoc(x), &result)) fail;
return result;
}

end

Thus, as a result of

pop(a)

the list elements are 2, 3, 4, and 5. The resulting structures are
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integern
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slot 3

nulln
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nulln
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nulln
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next list-element block�
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0
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integern

3
slot 3

integern

2
slot 2

integern

5
slot 1

integern

4
slot 0

hdr / ø next list-element block

6

- previous list-element block

2
4

first slot used
number of slots used

60
4

size of block
number of slots in block

lelem-

6

(Unicon) pointer to list header

The Result of Removing Elements from a List-Element Block
Note that the first list-element block is still linked in the chain, even though it no longer contains

any elements that are logically accessible. A list-element block is not removed from the chain when
it becomes empty. It is removed only when an element is removed from a list that already has an
empty list-element block. Thus, there is always at least one list-element block on the chain, even
if the list is empty. Aside from simplifying the access to list-element blocks from the list-header
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block, this strategy avoids repeated allocation in the case that pop/push pairs occur at the boundary
of two list-element blocks.

Continuing the previous example,

pop(a)

leaves the list elements 3, 4, and 5. The empty list-element block is removed from the chain:

integern

3
slot 3

integern

2
slot 2

integern

5
slot 1

integern

4
slot 0

hdr / ø next list-element block
hdr / ø previous list-element block

3
3

first slot used
number of slots used

60
4

size of block
number of slots in block

lelemhead
tail

6
-

id

list
3 number of elements in the list

6

-

(Unicon) pointer to list header

Removal of an Empty List-Element Block
Note that the value 2 is still physically in the list-element block, although it is logically inac-

cessible.

6.3 Positional Access

Positional reference of the form a[i] requires locating the correct list-element block. Out-of-range
references can be determined by examining the list-header block. If the list has several list-element
blocks, this involves linking through the list-element blocks, while keeping track of the count of
elements in each block until the appropriate one is reached. The result of evaluating a[i] is a variable
that points to the appropriate slot.

The portion of the subscripting code that handles lists is
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type_case dx of {
list: {

abstract {
return type(dx).lst_elem
}

/*
* Make sure that y is a C integer.
*/
if !cnv:C_integer(y) then {

/*
* If it isn’t a C integer, but is a large integer,
* fail on the out-of-range index.
*/

if cnv : integer(y) then inline { fail; }
runerr(101, y)
}

body {
word i, j;
register union block *bp; /* no need to be tended */
struct b_list *lp; /* doesn’t need to be tended */

/*
* Make sure that subscript y is in range.
*/

lp = (struct b_list *)BlkLoc(dx);
i = cvpos((long)y, (long)lp->size);
if (i == CvtFail || i > lp->size)

fail;
/*
* Locate the list-element block containing the
* desired element.
*/
bp = lp->listhead;
j = 1;

/*
* y is in range, so bp can never be null here. If it
* was, a memory violation would occur in the code that
* follows, anyhow, so exiting the loop on a NULL bp
* makes no sense.
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*/
while (i >= j + bp->lelem.nused) {

j += bp->lelem.nused;
bp = BlkLoc(bp->lelem.listnext);
}

/*
* Locate desired element and return a pointer to it.
*/
i += bp->lelem.first - j;
if (i >= bp->lelem.nslots)

i -= bp->lelem.nslots;
return struct_var(&bp->lelem.lslots[i], bp);
}

}

For the preceding example, a[3] produces a variable that points indirectly to the descriptor for
the value 5:

integern

3
slot 3

integern

2
slot 2

integern

5
slot 1

integern

4
slot 0

hdr / ø next list-element block
hdr / ø previous list-element block

3
3

first slot used
number of slots used

60
4

size of block
number of slots in block

lelem

9npv
-

-

-

(Unicon) pointer to list header

Referencing a List Element
Note the offset of nine words in the d-word of the variable. In version 6 of Icon the descriptor

pointed directly at the variable and the offset enabled the garbage collector to locate the top of
the block. In current versions of Icon and Unicon the variable points to the top of the block and
the offset enables the correct list-element to be referenced. This change was necessitated by the
introduction of block pointers — see Chapter 11 for details.
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6.4 Arrays (Unicon only)

The Unicon language provides a special case of the general list structure that is optimized for fast
access to the list-elements. An array is a list where all the list-elements are the same numeric type
and are in a single block. It is created by calling

array(dimen, value)
which will return a one dimensional “vector” of dimen elements that are all set to value. value
may be a small integer or a floating point value. It may also be a list, in which case the value for
the array is the value of the first element of the list.

For example, following evaluation of
vec := array(100,42)

there will be 100 integers in the array, all set to 42. The resulting structures are

42
42vec[100]

vec[99]

.

.

....

.

.

.

42
42

vec[1]
vec[2]

ø dims

First (and only) list-element block
intarray

416 size (bytes)

List header block

ø

id
-

list
100

listnpv
-

vec
�

At present (January 2017) multi-dimensional arrays are not supported, although there is provi-
sion in the data structures for more than one dimension. Multi dimensional arrays will be created
by calling

array(dimen1, dimen2, . . . , dimenn, value)
The only change to the diagram above will be that the null pointer in the dims field will be

replaced by a pointer to another intarray block that contains each of the values dimen1 . . .dimenn.
Provided that the elements in the array are only assigned values of the same initial type, they

will stay together in one contiguous block and enjoy the benefits of faster access. If a value of a
different type is assigned or an array element is deleted, or the array is extended (by push or put)
the runtime system converts the array into a conventional list. The code extract to convert an integer
array to a list (taken from the asgn operator) is below. In the extract, x is a descriptor that points to
the array element and y is a descriptor that points to the new value.
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if (BlkD(x,Intarray)->title==T_Intarray){
C_integer ii;
if (cnv:(exact)C_integer(y, ii))

*((word *)VarLoc(x) + Offset(x)) = ii;
else{ /* y is not integer, try to convert the intarray to list*/

tended struct b_list *xlist= BlkD(x, Intarray)->listp;
tended struct descrip dlist;
word i;

i = (Offset(x)*sizeof(word)-sizeof(struct b_intarray)+
sizeof(word)) / sizeof(word);

dlist.vword.bptr = (union block *) xlist;
dlist.dword = D_List;
if (arraytolist(&dlist)!=Succeeded) fail;

/*
* assuming the new list has one lelem block only,
* i should be in the first block. no need to loop
* through several blocks
*/

*(dptr)(&xlist->listhead->Lelem.lslots[i]) = y;
}

}

The code to convert an array of real values is very similar to the code for integer arrays.

RETROSPECTIVE: The structures used for implementing lists are relatively complicated, but
they provide a reasonable compromise, both in the utilization of storage and access speed, that
accommodates different access mechanisms.

Using a chain of list-element blocks allows lists to grow in size without limit. From the view-
point of positional access, this amounts to segmentation. This segmentation only occurs, however,
when elements are added to a list. The use of circular queues within list-element blocks allows
elements to be removed and added without wasting space.

Arrays provide a useful speed-up in cases where the list elements are numeric and the list does
not grow or shrink.

EXERCISES
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6.1 Diagram the structures that result from the evaluation of the following expressions:
graph := ["a"„]
graph[2] := graph[3] := graph
6.2 How much space does an empty list occupy?
6.3 The portions of the structures for a list that are not occupied by elements of the list constitute
overhead. Calculate the percentage of overhead in the following lists. Assume that the minimum
number of slots in a list-element block is eight.
a := []
a := [1, 2]
a := [1, 2, 3, 4, 5]
a := list(100)
a := []; every put(a, 1 to 100)
How do these figures vary as a function of the minimum number of slots in a list-element block?
6.4 What are the implications of not “zeroing” list elements when they are logically removed by a
pop, get, or pull?
6.5 When a list-element block is unlinked as the result of a pop, get, or pull, are the elements in it
really inaccessible to the source program?
6.6 There is considerable overhead involved in the implementation of lists to support both positional
access and stack and queue access mechanisms. Suppose the language were changed so that stack
and queue access mechanisms applied only to lists that were initially empty. What would the
likely impact be on existing Icon programs? How could the implementation take advantage of this
change?
6.7 As elements are added to lists, more list-element blocks are added and they tend to become
“fragmented.” Is it feasible to reorganize such lists, combining the elements in many list-element
blocks into one large block? If when and how could this be done?
6.8 A suggested alternative to maintaining a chain of list-element blocks is to allocate a larger block
when space is needed and copy elements from the previous block into it. Criticize this proposal.
6.9 Suppose it were possible to insert elements in the middle of lists, rather than only at the ends.
How might this feature be implemented?



Chapter 7

Sets and Tables

PERSPECTIVE: Sets and tables are data aggregates that are very useful for a number of common
programming tasks. Nevertheless, few programming languages support these data types, with the
notable exceptions of Sail (Reiser 1976) and SETL (Dewar, Schonberg, and Schwartz 1981). There
are many reasons why these obviously useful data types are not found in most programming lan-
guages, but perceived implementation problems certainly rank high among them. If only for this
reason, their implementation in Icon is worth studying.

Historically, tables in Icon were inherited from SNOBOL4 and SL5. Sets came later, as an
extension to Icon, and were designed and implemented as a class project. Although sets were a
late addition to Icon, they are simpler than tables. Nonetheless, they present many of the same
implementation problems that tables do. Consequently, sets are considered here first.

Sets and the operations on them support the familiar mathematical concepts of finite sets: mem-
bership, the insertion and deletion of members, and the operations of union, intersection, and dif-
ference. What is interesting about a set in Icon is that it can contain members of any data type. This
is certainly a case where heterogeneity significantly increases the usefulness of a data aggregate
without adding to the difficulty of the implementation, per se.

The ability of a set to grow and shrink in size influences the implementation significantly.
Efficient access to members of a set, which is needed for testing membership as well as the addition
and deletion of members, is an important consideration, since sets can be arbitrarily large.

Tables have more structure than sets. Abstractly, a table is a set of pairs that represents a many-
to-one relationship-a function. In this sense, the default value of a table provides an extension of
the partial function represented by the entry and assigned value pairs to a complete function over all
possible entry values. Programmers, however, tend to view tables in a more restricted way, using
them to tabulate the attributes of a set of values of interest. In fact, before sets were added to Icon,
tables were often used to simulate sets by associating a specific assigned value with membership.

99
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7.1 Sets

7.1.1 Data Organization for Sets

Hash lookup and linked lists are used to provide an efficient way of locating set members. For every
set there is a set-header block that contains a word for the number of members in the set and slots
that serve as heads for (possibly empty) linked lists of set-element blocks. The number of slots is an
implementation parameter. In version 6 of Icon there were thirty-seven slots in table-header blocks
on computers with large address spaces but only thirteen slots on computers with small address
spaces.This worked well for small hash tables, but performance degraded for large tables due to the
long hash chains in each slot.

Now, the hash table is segmented; each hash table starts out with a single segment containing a
fixed number of slots (typically eight), but the number of slots doubles repeatedly as the number of
segments grows. Small hash tables benefit from reduced memory requirements, while large tables
show dramatic performance gains. The price paid is one extra indirection to get to the lists of
members. The maximum number of segments in a set header block is a configuration parameter:
The default is six on machines with small address spaces and ten otherwise. Unicon allows up to
twenty segments, which places an upper limit on the maximum possible number of slots (albeit
quite a large one of slots × 219). To reduce the size of the diagrams the maximum number
of segments is assumed to be six in the figures that follow but, even with this low number, the
maximum number of slots is 256 (8 + 8 + 16 + 32 + 64 + 128), which is still a respectable increase
compared to version 6.

The structure for an empty set, produced by

s := set()

is
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ø
ø
ø
ø
ø

segment 5

segment 0
segment 1

-

slot 0
slot 1

...

slot 7ø
ø
ø
ø
ø
ø
ø
ø

slots
40 size

...

id
7 mask

set
0 number of elements in the set

setnp
-

s

Each member of a set is contained in a separate set-element block. When a value is looked up
in a set (for example, to add a new member), a hash number is computed from this value. The
absolute value of the remainder resulting from dividing the hash number by the number of slots is
used to select a slot.

Each set-element block contains a descriptor for its value, the corresponding hash number, and
a pointer to the next set-element block, if any, on the linked list. For example, the set-element block
for the integer 10 is:

integern

10
member value

129 hash number
ø next set-element block

selem

As illustrated by this figure, the hash number for an integer is not the value of the integer (in
Icon Version 6 it was). The hash number for an integer is the result of multiplying it by eight times
the golden ratio using fixed point arithmetic. Hash computation is discussed in detail in Sec. 7.3.

The structures for the set

s := set([10,23])

are
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id
7 mask

set
2 number of elements in the set

ø
ø
ø
ø
ø

-

slot 7ø
ø
ø
ø
ø
ø

-

ø slot 0

slots
40 size

integern

10

129

-
selem

integern

23

297
ø

selem

This example was chosen for illustration, since both 10 and 23 go in slot 1.
In searching the list, the hash number of the value being looked up is compared with the hash

numbers in the set-element blocks. If a match is found, the value in the set-element block may
or may not be the same as the value being looked up, since collisions in the hash computation
are unavoidable. Thus, if the hash numbers are the same, it is necessary to determine whether or
not their values are equivalent. The comparison that is used is the same one that is used by the
source-language operation x === y.

To improve the performance of the lookup process, the set-element blocks in each linked list
are ordered by their hash numbers. When a linked list of set-element blocks is examined, the search
stops if a hash number of an element on the list is greater than the hash number of the value being
looked up.

If the value is not found and the lookup is being performed to insert a new member, a set-
element block for the new member is created and linked into the list at that point. For example,

insert(s, 2)

inserts a set-element block for 2 at the head of the list in slot 1, since its hash value is 25. The word
in the set-header block that contains the number of members is incremented to reflect the insertion.

7.1.2 Set Operations

The set operations of union, intersection, and difference all produce new sets and do not modify
their arguments.

In the case of union, a copy of the larger set is made first to provide the basis for the union.
This involves not only copying the set-header block but also all of its set-element blocks. These
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are linked together as in the original set, and no lookup is required. After this copy is made, each
member of the set for the other argument is inserted in the copy, using the same technique that is
used in insert. The larger set is copied, since copying does not require lookup and the possible
comparison of values that insertion does. The insertion of a member from the second set may take
longer, however, since the linked lists in the copy may be longer.

In the case of intersection, a copy of the smaller argument set is made, omitting any of its
members that are not in the larger set. As with union, this strategy is designed to minimize the
number of lookups.

For the difference of two sets, a copy of the first argument set is made, adding only elements
that are not in the second argument. This involves looking up all members in the first argument set
in the second argument set.

7.2 Tables

7.2.1 Data Organization for Tables

The implementation of tables is similar to the implementation of sets, with a header block contain-
ing slots for elements ordered by hash numbers. A table-header block contains an extra descriptor
for the default assigned value. As with lists (but not sets), Unicon replaces the terminating null
pointer used by Icon with a pointer to the table header block.

An empty table with the default assigned value 0 is produced by
t := table(0)

The structure of the table-header is

integern

0default assigned value

ø
ø
ø
ø
ø

segment 5

segment 0
segment 1

-

slot 0
slot 1

...

slot 7hdr / ø
hdr / ø
hdr / ø
hdr / ø
hdr / ø
hdr / ø
hdr / ø
hdr / ø

slots
40 size

...

id
7 mask

table
0 number of elements in the table

tablenp
-

t



104

Table lookup is more complicated than set lookup, since table elements contain both an entry
value and an assigned value. Furthermore, table elements can be referenced by variables. A new
table element is created as a byproduct of assignment to a table reference with an entry value that
is not in the table.

The result of evaluating an assignment expression such as

t[10] := 1

illustrates the structure of a table-element block:

integern

1
assigned value

integern

10
entry value

129 hash number
hdr / ø next table-element block
telem

In the case of a table reference such as t[x], the hash number for the entry value x is used to select
a slot, and the corresponding list is searched for a table-element block that contains the same entry
value. As in the case of sets, comparison is first made using hash numbers; values are compared
only if their hash numbers are the same.

If a table-element block with a matching entry value is found, a variable that points to the
corresponding assigned value is produced. For example, if 10 is in t as illustrated previously, t[10]
produces

integern

1
assigned value

integern

10
entry value

129 hash number
hdr / ø next table-element block
telem

5npv
-

-

-

If this variable is dereferenced, as in

write(t[10])

the value 1 is written. On the other hand, if an assignment is made to this variable, as in

t[10] +:= 1

the assigned value in the table-element block is changed:
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integern

2
assigned value

integern

10
entry value

129 hash number
hdr / ø next table-element block
telem

If a table element with a matching entry value is not found, the situation is very similar to that
in a subscripted string: the operation to be performed depends on whether the table reference is
used in a dereferencing or assignment context. In a dereferencing context, the default value for the
table is produced, while in an assignment context, a new element is added to the table.

The approach taken is similar to that for subscripted strings: a trapped variable is created. As
with substring trapped variables, table-element trapped variables contain the information that is
necessary to carry out the required computation for either dereferencing or assignment.

Suppose, for example, that the entry value 36 is not in the table t. Then t[36] produces the
following result:

integern

36
entry value

465 hash number

tvtbl
- table header block for t

tvtblnptv
-

If this trapped variable is dereferenced, as in

write(t[36])

the default assigned value, 0, which is in the table-header block for t, is produced. Unfortunately,
the situation is not always this simple. It is possible for elements to be inserted in a table between
the time the table-element trapped-variable block is created and the time it is dereferenced. An
example is

write(t[36] , t[36] := 2)

Since functions do not dereference their arguments until all the arguments have been evaluated,
the result of dereferencing the first argument of write should be 2, not 0. In order to handle such
cases, when a table-element trapped variable is dereferenced, its linked list in the table must be
searched again to determine whether to return the assigned value of a newly inserted element or to
return the default value.

If an assignment is made to the table reference, as in

t[36] +:= 1
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the table-element trapped-variable block is copied to a new table-element block with the assigned
value stored in the new block.

It then is necessary to search the linked list for its slot to determine the place to insert the
table-element block. As in the case of dereferencing, elements may have been inserted in the table
between the time the table-element trapped variable was created and the time a value is assigned to
it. Normally, no matching entry is found, and the new table-element block, is inserted with the new
assigned value. If a matching entry is found, its assigned value is simply changed, and the block is
discarded.

Note that reference to a value that is not in a table requires only one computation of its hash
value, but two lookups are required in the linked list of table-element blocks for its slot.

7.3 Hashing Functions

Ideally, a hash computation should produce a different result for every different value to which it is
applied, and the distribution of the remainder on division by the number of slots should be uniform.
Even approaching this ideal requires an impractical amount of computation and space. In practice,
it is desirable to have a fast computation that produces few collisions.

The subject of hash computation has been studied extensively. In general, there is a trade-
off between faster lookup, on the average, and more storage overhead. Beyond this, there is a
substantial body of knowledge concerning useful techniques (Knuth 1973, pp. 506-549). For
example, there are fewer collisions if the number of slots is a prime that is not close to a power of
two. Originally, this consideration motivated the choices of 37 and 13 for number of hash table slots
on computers with large and small address spaces, respectively. As computer memory sizes grew,
the one-size-fits-all strategy was replaced with one that increases the number of slots as needed
(Griswold and Townsend 1993).

In most situations in which hashing techniques are used, all the values for which hash compu-
tations are performed are strings. In Icon, however, any kind of value can be the member of a set
or the entry value in a table. The hash computation must, therefore, apply to any type of value.
The support routine for computing hash numbers first checks for a string, and then has a switch
statement to handle all the other types.

The string hashing implementation is important and deserves extra scrutiny. The Unicon im-
plementation differs from Icon and is shown in blue; the #ifdef is included for exposition and is not
in the code.

uword hash(dp)
dptr dp;

{
register char *s;
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register uword i;
register word j, n;
register unsigned int *bitarr;
double r;
if (Qual(*dp)) {

#ifdef Unicon
hashstring:

/*
* Compute the hash value for the string based on a scaled sum
* of its first and last several characters, plus its length.
* Loops are unrolled.
*/
i = 0;
s = StrLoc(*dp);
n = StrLen(*dp);

switch(n){
case 20: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 19: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 18: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 17: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 16: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 15: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 14: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 13: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 12: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 11: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 10: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 9: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 8: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 7: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 6: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 5: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 4: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
case 3: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 2: i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
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case 1: i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
case 0: break;
default:

i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);

s += n - 20;

i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);
i ˆ= (i << 7)ˆ(*s++)ˆ(i >> 3);
i ˆ= (i << 11)ˆ(*s++)ˆ(i >> 5);

}
i += n;

}
#else /* Icon */

hashstring:
/*
* Compute the hash value for the string based on a scaled
* sum of its first ten characters, plus its length.
*/

i = 0;
s = StrLoc(*dp);
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j = n = StrLen(*dp);
if (j > 10) /* limit scan to first ten characters */

j = 10;
while (j-- > 0) {

i += *s++ & 0xFF; /* add unsigned version of char */
i *= 37; /* scale by a nice prime number */

}
i += n; /* add (untruncated) string length */
}

#endif /* Icon / Unicon */

else {
switch (Type(*dp)) {

/*
* The hash value of an integer is itself times eight
* times the golden ratio. We do this calculation in
* fixed point. We don’t just use the integer itself,
* for that would give bad results with sets having
* entries that are multiples of a power of two.
*/

case T_Integer:
i = (13255 * (uword)IntVal(*dp)) » 10;
break;

/*
* The hash value of a bignum is based on its length and
* its most and least significant digits.
*/

case T_Lrgint:
{
struct b_bignum *b = &BlkLoc(*dp)->bignumblk;
i = ((b->lsd - b->msd) << 16) ˆ

(b->digits[b->msd] << 8) ˆ
b->digits[b->lsd];

}
break;
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/*
* The hash value of a real number is itself times a
* constant, converted to an unsigned integer. The
* intent is to scramble the bits well, in the case of
* integral values, and to scale up fractional values
* so they don’t all land in the same bin. The constant
* below is 32749 / 29, the quotient of two primes,
* and was observed to work well in empirical testing.
*/
case T_Real:

GetReal(dp,r);
i = r * 1129.27586206896558;
break;

/*
* The hash value of a cset is based on a convoluted
* combination of all its bits.
*/
case T_Cset:

i = 0;
bitarr = BlkLoc(*dp)->cset.bits + CsetSize - 1;
for (j = 0; j < CsetSize; j++) {

i += *bitarr--;
i *= 37; /* better distribution */
}

i %= 1048583; /* scramble the bits */
break;

/*
* The hash value of a list, set, table, or record is
* its id, hashed like an integer.
*/
case T_List:

i = (13255 * BlkLoc(*dp)->list.id) » 10;
break;

case T_Set:
i = (13255 * BlkLoc(*dp)->set.id) » 10;
break;

case T_Table:
i = (13255 * BlkLoc(*dp)->table.id) » 10;
break;
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case T_Record:
i = (13255 * BlkLoc(*dp)->record.id) » 10;
break;

case T_Proc:
dp = &(BlkLoc(*dp)->proc.pname);
goto hashstring;

default:
/*
* For other types, use the type code as the hash
* value.
*/
i = Type(*dp);
break;

}
}

return i;
}

To hash a string, its characters are combined mathematically as integers. At most the first ten
characters are used. Unicon uses up to the first ten and the last ten, to distinguish long strings such
as identifiers with differences at either end. The limit on the number of characters used in the hash
is important because strings can be very long and adding all the characters does not improve the
hashing sufficiently to justify the time spent in the computation. A maximum of ten or twenty is,
however, ad hoc. To provide a measure of discrimination between strings with the same initial
substring, the length of the string is added to the sum of the characters.

Icon’s technique for hashing strings is not sophisticated, and others that produce better
hashing results are known. However, the computation is simple, easy to write in C, and
works well on most data. Unicon’s technique is adapted from one due to Arash Partow
(http://www.partow.net/programming/hashfunctions/), with length caps and loop unrolling. It was
validated empirically on a wide range of data sets.

For a numeric type, the hash value is derived from the number. In the case of a cset, the words
containing the bits for the cset are combined using the exclusive-or operation.

The remaining data types pose an interesting problem. Hash computation must be based on
attributes of a value that are invariant with time. Some types, such as files, have such attributes. On
the other hand, there is no time-invariant attribute that distinguishes one list from another. The size
of a list may change, the elements in it may change, and even its location in memory may change
as the result of garbage collection. For a list, its only time-invariant attribute is its type.

This presents a dilemma—the type of such a value can be used as its hash number, but if that is
done, all values of that type are in the same slot and have the same hash number. Lookup for these



112

values degenerates to a linear search. The alternative is to add some time-invariant attribute, such
as a serial number, to these values. Icon does this, at the cost of increasing the size of every such
value.

RETROSPECTIVE: Few programming languages support sets or tables with Icon’s generality.
The implementation of sets and tables provides a clear focus on the generality of descriptors and
the uniformity with which different kinds of data are treated in Icon.

Since sets and tables may be very large, efficient lookup is an important concern. The hashing
and chaining technique used is only one of many possibilities. However, there must be a mechanism
for determining the equivalence of values independent of the structure in which they are stored.

The fact that elements in tables are accessed by subscripting expressions introduces several
complexities. In particular, the fact that the contents of the table that is subscripted may change
between the time the subscripting expression is evaluated and the time it is dereferenced or assigned
to introduces the necessity of two lookups for every table reference.

Hashing a variety of different types of data raises interesting issues. The hashing techniques
used by Icon are not sophisticated and there is considerable room for improvement. The trade-offs
involved are difficult to evaluate, however.

EXERCISES
7.1 Contrast sets and csets with respect to their implementation, their usefulness in programming,
and the efficiency of operations on them.
7.2 Give an example of a situation in which the heterogeneity of sets is useful in programming.
7.3 How much space does an empty set occupy?
7.4 Diagram the structures resulting from the evaluation of the following expressions:
t := table()
t[t] := t
7.5 There are many sophisticated data structures that are designed to ensure efficient lookup in data
aggregates like sets and tables (Gonnet 1984). Consider the importance of speed of lookup in sets
and tables in Icon and the advantages that these more sophisticated data structures might supply.
7.6 Some of the more sophisticated data structures mentioned in the preceding exercise have been
tried experimentally in Icon and either have introduced unexpected implementation problems or
have not provided a significant improvement in performance. What are possible reasons for these
disappointing results?
7.7 Icon goes to a lot of trouble to avoid adding table-element blocks to a table unless an assignment
is made to them. Suppose a table-element block were simply added when a reference was made to
an entry value that is not in the table.

• How would this simplify the implementation?

• What positive and negative consequences could this change have on the running speed and
space required during program execution?
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• Give examples of types of programs for which the change would have positive and negative
effects on performance, respectively.

• Would this change be transparent to the Icon programmer, not counting possible time and
space differences?

7.8 There is space in a table-element trapped-variable block to put the default value for the table.
Why is this not done?
7.9 What is the consequence of evaluating the following expressions?

t := table(0)
t[37] := 2
write(t[37], t := table(1))

What would happen if the last line given previously were

write(t[37],t := list(100,3))

or

write(t[37], t := "hello")

7.10 Give examples of different strings that have the same hash numbers.
7.11 Design a method for hashing strings that produces a better distribution than the the current
one.
7.12 What attribute of a table is time-invariant?
7.13 What kinds of symptoms might result from a hashing computation based on an attribute of a
value that is not time-invariant?
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Chapter 8

The Interpreter

PERSPECTIVE: The interpreter provides a software realization of Icon’s virtual machine. This
machine is stack-based. The basic units on which the Icon virtual machine operates are descrip-
tors. The instructions for the virtual machine consist of operations that manipulate the stack, call
C functions that carry out the built-in operations of Icon, and manage the flow of control. The
Icon interpreter executes these virtual machine instructions. It consists of a loop in which a vir-
tual machine instruction is fetched and control is transferred to a section of code to perform the
corresponding operation.

8.1 Stack-Based Evaluation

Virtual machine instructions typically push and pop data on the interpreter stack. The interpreter
stack, which is distinct from the stack used for calls of C functions, is an array of words. The
variable sp points to the last word pushed on the interpreter stack. Pushing increments sp, while
popping decrements it. When the interpreter executes code that corresponds to a built-in operation
in Icon, it pushes descriptors for the arguments on the interpreter stack and calls a C function corre-
sponding to that operation with a pointer to the place on the interpreter stack where the arguments
begin. A null descriptor is pushed first to serve as a "zeroth" argument (Arg0) that receives, by
convention, the result of the computation and becomes the top descriptor on the stack when the C
function returns. On a more conventional virtual machine, the result of the computation would be
pushed on the stack, instead of being returned in an argument. The latter method is more convenient
in Icon.

To illustrate this basic mechanism, consider the expression

?10

which produces a randomly selected integer between 1 and 10, inclusive. The corresponding virtual
machine instructions are

115
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pnull # push null descriptor for the result
int 10 # push descriptor for the integer 10
random # compute random value

The instructions pnull and int operate directly on the stack. The instruction random calls a C
function that computes random values.

The pnull instruction pushes a null descriptor:

.

.

.

nulln

0
descriptor for result (Arg0)

sp -

The int instruction pushes a descriptor for the integer 10:

.

.

.

nulln

0
descriptor for result (Arg0)

integern

10
argument of random (Arg1)

sp -

Suppose that the C function for random computes 3. It replaces the null value of Arg0 by a
descriptor for the integer 3. When it returns, sp is set to point to Arg0 and the situation is

.

.

.

integern

3sp -

8.2 Virtual Machine Instructions

The various aspects of expressions that appear in Icon source-language programs are reflected,
directly or indirectly, in the instruction set for the Icon virtual machine. References to constants
(literals) and identifiers have direct correspondences in the instruction set of the virtual machine.
There is a virtual machine instruction for each source-language operator. This is possible, since the
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meaning of an operation is fixed and cannot be changed during program execution. The meaning
of a function call, however, cannot be determined until it is evaluated, and there is a single virtual
machine instruction for function invocation. The invocation of functions is described in detail in
Chapter 10.

There are several virtual machine instructions related to control structures and the unique as-
pects of expression evaluation in Icon. These are discussed in the next two chapters. A complete
list of virtual machine instructions is given in Appendix B.

8.2.1 Constants

Four kinds of data can be represented literally in Icon programs: integers, strings, csets, and real
numbers. The four corresponding virtual machine instructions are

int n # integer n
str n, a # string of length n at address a
cset a # cset block at address a
real a # real block at address a

The values of integer literals appear as arguments of int instructions. In the case of strings, the
two arguments give its length and the address of its first character.

The string itself is constructed by the linker and is loaded into memory from the icode file.
For csets and real numbers, the linker constructs blocks, which are also loaded from the icode file.
These blocks are identical in format to blocks that are constructed during program execution.

The virtual machine instructions str, cset, and real push appropriate descriptors to reference the
data as it appears in the icode. For example, the virtual machine instructions for

?"aeiou"
are

pnull
str 5, a
random

where a is the address of the string "aeiou". The pnull instruction pushes a null descriptor as in the
previous example:

.

.

.

nulln

0
descriptor for result (Arg0)

sp -
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The str instruction constructs a descriptor for the string "aeiou":

.

.

.

nulln

0
descriptor for result (Arg0)

5
- "aeiou"
argument of random (Arg1)

sp -

If random produces the string "o", this string replaces the null descriptor and the stack becomes

.

.

.

1
- "o"sp -

In reality, things are a bit more complicated. See Section 8.2.5.

8.2.2 Identifiers

From the viewpoint of the interpreter, there are four kinds of identifiers: global identifiers, static
identifiers, local identifiers, and arguments. The values of global and static identifiers are in arrays
of descriptors at fixed locations in memory. The values of local identifiers and arguments, on the
other hand, are kept on the stack as part of the information associated with a procedure call.

The values of the arguments in the call of a procedure are pushed on the stack as the result of
the evaluation of expressions prior to the invocation of the procedure. The initial null values for
local identifiers are pushed on the stack when the procedure is called.

Consider the following procedure declaration:

procedure p(x,y)
local z, i, j
j := 1
z := x

...
end

In the evaluation of a call to this procedure such as
p(10,20)
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the stack is in the following state prior to the evaluation of the first expression in p:

nulln

0
value of j

sp -

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

The portion of the stack between the arguments and local identifiers is fixed in size and contains
information that is saved when a procedure is called. This information is described in Chapter 10.

There are four virtual machine instructions for constructing variable descriptors:

global n
static n
arg n
local n

Identifiers of each kind are numbered starting at zero. Consequently,

arg 0

pushes a variable descriptor for the first argument. In each case, the descriptor that is pushed on the
stack is a variable that points to the descriptor for the value of the corresponding identifier.

Consider the expression

j := 1

The corresponding virtual machine instructions are
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pnull # push null descriptor for the result
local 2 # push variable descriptor for j
int 1 # push descriptor for the integer 1
asgn # perform assignment

When these instructions are interpreted, the succession of stack states is

nulln

0
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

sp -
nulln

0
descriptor for result (Arg0)

The Stack after pnull
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nulln

0
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

nulln

0
descriptor for result (Arg0)

sp -
nullnvp

-

first argument of asgn (Arg1)

�

The Stack after local 2
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nulln

0
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

nulln

0
descriptor for result (Arg0)

0nvp
-

first argument of asgn (Arg1)

�

sp -
integern

1
second argument of asgn (Arg2)

The Stack after int 1
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integern

1
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

0nvp
-

result returned by asgn
sp -

�

The Stack after asgn
Note that asgn assigns the value of its second argument to j and overwrites Arg0 with a variable

descriptor, which is left on the top of the stack.
Similarly, the virtual machine instructions for

z := x

are

pnull
local 0
arg 0
asgn

the states of the stack are



124

integern

1
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

nulln

0
descriptor for result (Arg0)

sp -

The Stack after pnull

integern

1
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

nulln

0
descriptor for result (Arg0)

0nvp
-sp -

first argument of asgn (Arg1)

�

The Stack after local 0
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integern

1
value of j

nulln

0
value of i

nulln

0
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

nulln

0
descriptor for result (Arg0)

0nvp
-

first argument of asgn (Arg1)

�

0nvp
-sp -

second argument of asgn (Arg2)

�

The Stack after arg 0
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integern

1
value of j

nulln

0
value of i

integern

10
value of zlocals

.

.

.

integern

20
value of y

.

.

.

integern

10
value of xarguments

.

.

.

0nvp
-

result returned by asgn
sp -

�

The Stack after asgn

8.2.3 Operators

There is a virtual machine instruction for each of the forty-two operators in Icon. The instructions
random and asgn described previously are examples. Casting Icon operators as virtual machine
instructions masks a considerable amount of complexity, since few Icon operators are simple. For
example, although x + y appears to be a straightforward computation, it involves checking the
types of x and y, converting them to numeric types if they are not already numeric, and terminating
with an error message if this is not possible. If x and y are numeric or convertible to numeric,
addition is performed. Even this is not simple, since the addition may be integer or floating-point,
depending on the types of the arguments. For example, if x is an integer and y is a real number, the
integer is converted to a real number. None of these computations is evident in the virtual machine
instructions produced for this expression, which are

pnull
local x
local y
plus

In the instructions given previously, the indices that are used to access identifiers have been
replaced by the names of the identifiers, which are assumed to be local. This convention is followed
in subsequent virtual machine instructions for ease of reading.
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Augmented assignment operations do not have separate virtual machine instructions. Instead,
the instruction dup first pushes a null descriptor and then pushes a duplicate of the descriptor that
was previously on top of the stack. For example, the virtual machine instructions for

i +:= 1

are

pnull
local i
dup
int 1
plus
asgn

The stack after the execution of local is

0nvp
- local isp -

nulln

0

.

.

.

The execution of dup produces

0nvp
- local i

nulln

0

.

.

.

nulln

0
0nvp

6

sp -

The dup instruction simply takes the place of the pnull and second local instructions in the
virtual machine instructions for

i := i + 1

which are
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pnull
local i
pnull
local i
int 1
plus
asgn

In this case, only a single local instruction is avoided. If the variable to which the assignment is
made is not just an identifier but, instead, a more complicated construction, as in

a[j] +:= 1

substantial computation may be saved by duplicating the result of the first argument expression
instead of recomputing it.

8.2.4 Functions

While the meaning of an operation is fixed and can be translated into a specific virtual machine
instruction, the meaning of a function call can change during program execution. The value of the
function also can be computed. as in

(p[i])(x, y)

The general form of a call is

expr0(expr1, expr2, ..., exprn)

The corresponding virtual machine instructions are

code for expr0
code for expr1
code for expr2

...
code for exprn
invoke n

The invoke instruction is relatively complicated, since the value of expr0 may be a procedure, an
integer (for mutual evaluation), or even a value that is erroneous. Function invocation is discussed
in detail in Chapter 10.
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8.2.5 Self-Modifying Instructions

Seven opcodes, including several described in the preceding sections, contain operands whose val-
ues are addresses within the virtual machine icode. The linker cannot know these run-time ad-
dresses, so instead, it generates the instructions with byte offsets, relative to the current instruction.
At runtime the interpreter obtains the address in question by adding the current instruction pointer
to the offset. In order to avoid repeating this calculation every time the instruction executes, the
interpreter stores the pointer in place of the offset and modifies the opcode to indicate that the
offset has been converted to a pointer. The self modifying instructions and their address-holding
counterparts are:

str Astr
cset Astr
real Areal
global Aglobal
static Astatic
goto Agoto
mark Amark

The details of the str instruction illustrate the code for self-modifying instructions. There are
several points of interest. The opcode must be modified from Op_Str to Op_Astr and its offset
operand modified to contain a pointer. Depending on whether Concurrent is enabled, the self-
modification of the instruction is done by either two "Put" macros (PutOp(Op_Astr) on the current
opcode and PutWord(opnd)), or by a PutInstr(Op_Astr, opnd, 2) after the instruction pointer is
referring to the operand. This is because these self-modifying instructions create a race condition
when executed concurrently and thus require mutex locks. After (potentially) waiting to obtain a
lock, the instruction must check again to see if a competing thread has already modified its opcode,
and if so, it jumps down to the code for Op_Astr.

case Op_Str: /* string */
#ifdef Concurrent

MUTEX_LOCKID(MTX_OP_ASTR);
if (ipc.op[-1] == Op_Astr) {

MUTEX_UNLOCKID(MTX_OP_ASTR); goto L_astr; }
#else /*Concurrent*/

PutOp(Op_Astr);
#endif /*Concurrent*/

PushVal(GetWord)

...
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opnd = (word)strcons + GetWord;

#ifdef Concurrent
PutInstr(Op_Astr, opnd, 2);

#else /*Concurrent*/
PutWord(opnd);

#endif /*Concurrent*/
PushAVal(opnd);
InterpEVValD((dptr)(rsp-1), e_literal);

MUTEX_UNLOCKID(MTX_OP_ASTR);
break;

case Op_Astr: /* string, absolute address */
L_astr:

PushVal(GetWord);
PushAVal(GetWord);
InterpEVValD((dptr)(rsp-1), e_literal);
break;

8.3 The Interpreter Proper

8.3.1 The Interpreter Loop

The interpreter, which is called interp(), is basically simple in structure. It maintains a location in
the icode (ipc) and begins by fetching the instruction pointed to by ipc and incrementing ipc to the
next location. It then branches to a section of code for processing the virtual machine instruction
that it fetched. The interpreter loop is

for (;;) {
op = GetWord;
switch (op) {

...
case Op_Asgn:
...
case Op_Plus:
...
}
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continue;
...

}

where GetWord is a macro that is defined to be (*ipc++).
Macros are used extensively in the interpreter to avoid repetitious coding and to make the inter-

preter easier to read. The coding is illustrated by the case clause for the instruction plus:

case Op_Plus: /* e1 + e2 */
Setup_Op(2);
DerefArg(1);
DerefArg(2);
Call_Op;
break;

Setup_Op(n) sets up a pointer to the address of Arg0 on the interpreter stack. The resulting
code is

rargp = (dptr)(sp - 1) - n;

The value of n is the number of arguments on the stack.
DerefArg(n) dereferences argument n. If it is a variable, it is replaced by its value. Thus,

dereferencing is done in place by changing descriptors on the interpreter stack.
Call_Cond calls the appropriate C function with a pointer to the interpreter stack as provided by

Setup_Op(n). The function itself is obtained by looking up op in an array of pointers to functions.
The code produced by Call_Cond is (almost)

(*(optab(op]) )(rargp);
sp = (word * )rargp + 1:

In the case where a C function produces a result, as plus always does, that result is placed in
the Arg0 descriptor on the interpreter stack, as illustrated by the examples in Chapters 4 and 5. The
interpreter adjusts sp to point to the v-word of Arg0. The break transfers control to the end of the
switch statement, where a continue statement transfers control to the beginning of the interpreter
loop, and the next instruction is fetched.

As illustrated earlier, some virtual machine instructions have operands, which follow the in-
structions in the icode. The interpreter code for such an instruction fetches its operands. An exam-
ple is

int n

The interpreter code for int is



132

case Op_Int: /* integer */
PushVal(D_Integer);
PushVal(GetWord);
break;

PushVal(x) pushes x onto the interpreter stack. Thus, the descriptor for the integer is constructed
by first pushing the constant D_Integer for the d-word and then pushing the fetched operand for the
v-word.

8.3.2 Interpreter State Variables

The state of the interpreter is characterized by several variables, called i-state variables. Two i-
state variables mentioned previously are sp, the interpreter stack pointer, and ipc, the interpreter
“program counter.”

The interpreter also pushes frames on the interpreter stack when procedures are called. Such
frames are analogous to the frames pushed on the C stack when a C function is called, and contain
information (typically i-state variables) that is saved when a procedure is called and restored when
a procedure returns. There are other kinds of frames for special aspects of expression evaluation;
these are described in Chapter 9. Pointers to frames are themselves i-state variables.

The proper maintenance of i-state variables is a central aspect of the interpreter and is discussed
in detail in the next two chapters.

RETROSPECTIVE: The interpreter models, in software, the hardware of a cpu. The instruction
fetch, the execution of operations, and the flow of control are basically the same as that in hardware
execution, as is the use of a stack.

An interpreter offers great flexibility. It is easy to add virtual machine instructions, change
existing ones, or change how they are implemented. Tracking and monitoring also are easy to
add. The interpreter is machine-independent and portable. These advantages outweigh the loss in
efficiency associated with emulating hardware in software.

EXERCISES
8.1 Why is it advantageous for the first argument of str to be the length of the string, rather than its
address?
8.2 Show the states of the stack for the execution of the virtual machine instructions for the follow-
ing Icon expressions:

i := i + 1
l := ???j

8.3 Give an example for which
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expr1 := expr1 + expr2

produces a different result from

expr1 +:= expr2

8.4 Describe, in general terms, what would be involved in adding a new operator to Icon.
8.5 Describe, in general terms, what would be involved in adding a new kind of literal to Icon.
8.6 Suppose that functions were bound at translation time instead of being source-language values.
How might the virtual machine be modified to take advantage of such a feature? What effect would
this have on the interpreter?
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Chapter 9

Expression Evaluation

PERSPECTIVE: The preceding chapter presents the essentials of the interpreter and expression
evaluation as it might take place in a conventional programming language in which every expression
produces exactly one result. For example, expressions such as

i := j
k := i + j
i +:= ?k

each produce a single result: they can neither fail nor can they produce sequences of results.
The one feature of Icon that distinguishes it most clearly from other programming languages is

the capacity of its expression-evaluation mechanism to produce no result at all or to produce more
than one result. From this capability come unconventional methods of controlling program flow,
novel control structures, and goal-directed evaluation.

The generality of this expression-evaluation mechanism alone sets Icon apart from other pro-
gramming languages. While generators, in one form or another, exist in a number of programming
languages, such as IPL-V (Newell 1961), CLU (Liskov 1981), Alphard (Shaw 1981), and SETL
(Dewar, Schonberg, and Schwartz 1981), such generators are limited to specific constructs, des-
ignated contexts, or restricted types of data. Languages with pattern-matching facilities, such
as SNOBOL4 (Griswold, Poage, and Polonsky 1971), InterLisp (Teitelman 1974), and Prolog
(Clocksin and Mellish 1981), generate alternative matches, but only within pattern matching.

Just as Icon’s expression-evaluation mechanism distinguishes it from other programming lan-
guages, it is also one of the most interesting and challenging aspects of Icon’s implementation. Its
applicability in every context and to all kinds of data has a pervasive effect on the implementation.
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9.1 Bounded Expressions

A clear understanding of the semantics of expression evaluation in Icon is necessary to understand
the implementation. One of the most important concepts of expression evaluation in Icon is that
of a bounded expression, within which backtracking can take place. However, once a bounded
expression has produced a result, it cannot be resumed for another result. For example, in

write(i = find(s1,s2))

find may produce a result and may be resumed to produce another result if the comparison fails.
On the other hand, in

write(i = find(s1, s2))
write(j = find(s1, s3))

the two lines constitute separate expressions. Once the evaluation of the expression on the first line
is complete, it cannot be resumed. Likewise, the evaluation of the expression on the second line is
not affected by whether the expression on the first line succeeds or fails. However, if the two lines
are joined by a conjunction operation, as in

write(i = find(s1, s2)) &
write(i = find(s1, s3))

they are combined into a larger single expression and the expression on the second line is not eval-
uated if the expression on the first line fails. Similarly, if the expression on the first line succeeds,
but the expression on the second line fails, the expression on the first line is resumed.

The reason for the difference in the two cases is obscured by the fact that the Icon translator
automatically inserts a semicolon at the end of a line on which an expression is complete and for
which a new expression begins on the next line.

Consequently, the first example is equivalent to

write(i = find(s1, s2));
write(i = find(s1 , s3))

The difference between the semicolon and the conjunction operator is substantial. A semicolon
bounds an expression, while an operator binds its operands into a single expression.

Bounded expressions are enclosed in ovals in the following examples to make the extent of
backtracking clear. A compound expression, for example, has the following bounded expressions:

{ expr1;
�� �expr2;
�� �...; exprn }
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Note that exprn is not, of itself, a bounded expression. However, it may be part of a larger
bounded expression, as in

{ expr1;
�� �expr2;
�� �...; exprn } = 1;

'
&

$
%

Here exprn is part of the bounded expression for the comparison operator. The entire enclosing
bounded expression is a consequence of the final semicolon. In the absence of the context provided
by this semicolon, the entire expression might be part of a larger enclosing bounded expression,
and so on.

The separation of a procedure body into a number of bounded expressions, separated by semi-
colons (explicit or implicit) and other syntactic constructions, is very important. Otherwise, a
procedure body would consist of a single expression, and failure of any component would prop-
agate throughout the entire procedure body. Instead, control backtracking is limited in scope to
abounded expression, as is the lifetime (and hence stack space) for temporary computations.

Bounded expressions are particularly important in control structures. For example, in the if-
then-else control structure, the control expression is bounded but the other expressions are not:

if expr1
�� �then expr2 else expr3

As with the compound expression illustrated earlier, expr2 or exp3 (whichever is selected) may
be the part of a larger bounded expression. An example is

write ( if i < j
�� �then i to j else j to i )

If the control expression were not a separate bounded expression, the failure of expr2 or exp3

would result in backtracking into it and the if-then-else expression would be equivalent to

(expr1 & expr2) | expr3

which is hardly what is meant by if-then-else.
In a while-do loop, the control expression and the expression in the do clause are both bounded:

while expr1
�� �do expr2
�� �

The two bounded expressions ensure that the expressions are evaluated independently of each
other and any surrounding context. For example, if expr2 fails, there is no control backtracking
into expr1.



138

9.1.1 Expression Frames

In the implementation of Icon, the scope of backtracking is delineated by expression frames. The
virtual machine instruction

mark L1

starts an expression frame. If the subsequent expression fails, ipc is set to the location in the icode
that corresponds to L1. The value of ipc for a label is relative to the location of the icode that is read
in from the icode file. For simplicity in the description that follows, the value of ipc is referred to
just by the name of the corresponding label.

The mark instruction pushes an expression frame marker onto the stack and sets the expression
frame pointer, efp, to it. Thus, efp indicates the beginning of the current expression frame. There
is also a generator frame pointer, gfp, which points to another kind of frame that is used to retain
information when an expression suspends with a result and is capable of being resumed for another.
Generator frames are described in Sec. 9.3. The mark instruction sets gfp to zero, indicating that
there is no suspended generator in a new expression frame.

An expression frame marker consists of four words: the value ipc for the argument of mark
(called the failure ipc), the previous efp, the previous gfp, and ilevel, which is related to suspended
generators:

gfp:0

previous efp
ilevel

L1 failure ipc
previous gfp

efp -

.

.

.

An expression frame marker is declared as a C structure:

struct ef_marker { /* expression frame marker */
word *ef_failure; /* failure ipc */
struct ef_marker *ef_efp; /* efp */
struct gf_marker *ef_gfp; /* gfp */
word ef_ilevel; /* ilevel */

This structure is overlaid on the interpreter stack in order to reference its components. The code
for the mark instruction is



139

case Op_Mark: /* create expression frame marker */
newefp = (struct ef_marker *)(sp + 1);
opnd = GetWord;
opnd += (word)ipc;
newefp->ef_failure = (word *)opnd;
newefp->ef_gfp = gfp;
newefp->ef_efp = efp;
newefp->ef_ilevel = ilevel;
sp += Wsizeof(*efp);
efp = newefp;
gfp = 0;
break;

The macro Wsizeof(x) produces the size of x in words.
An expression frame is removed by the virtual machine instruction

unmark
which restores the previous efp and gfp from the current expression frame marker and removes the
current expression frame by setting sp to the word just above the frame marker.

The use of mark and unmark is illustrated by
if expr1 then expr2 else expr3

for which the virtual machine instructions are

mark L1
code for expr1

unmark
code for expr2

goto L2
L1:

code for expr3

L2:

The mark instruction creates an expression frame for the evaluation of expr1. If expr1 produces
a result, the unmark instruction is evaluated, removing the expression frame for expr1, along with
the result produced by expr1. Evaluation then proceeds in expr2.

If expr1 fails, control is transferred to the location in the icode corresponding to L1 and the
unmark instruction is not executed. In the absence of generators, failure also removes the current
expression frame, as described in Sec. 9.2.

It is necessary to save the previous value of efp in a new expression marker, since expression
frames may be nested. This occurs in interesting ways in some generative control structures, which
are discussed in Sec. 9.4. Nested expression frames also occur as a result of evaluating compound
expressions, such as
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while expr1
�� �do if expr2

�� �then expr3

�
�

�
�

9.2 Failure

The interesting aspects of implementing expression evaluation in Icon can be divided into two
cases: without generators and with generators. The possibility of failure in the absence of genera-
tors is itself of interest, since it occurs in other programming languages, such as SNOBOL4. This
section describes the handling of failure and assumes, for the moment, that there are no generators.
The next section describes generators.

In the absence of generators, if failure occurs anywhere in an expression, the entire expression
fails without any further evaluation. For example, in the expressions

i := numeric(s)
line := read(f)

if numeric(s) fails in the first line, the assignment is not performed and evaluation continues imme-
diately with the second line. In the implementation, this amounts to removing the current expres-
sion frame in which failure occurs and continuing with ipc set to the failure ipc from its expression
frame marker.

The virtual machine instructions for the previous example are

mark L1
pnull
local i
global numeric
local s
invoke 1
asgn
unmark

L1:
mark L2
pnull
local line
global read
local f
invoke 1
asgn
unmark

L2:
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Prior to the evaluation of the expression on the first line, there is some expression frame on the
stack:

sp -

.

.

.

.

.

.

.

.

.

efp -

The instruction
mark L1

starts a new expression frame. The execution of subsequent virtual machine instructions pushes
additional descriptors. The state of the stack when numeric is called by the invoke instruction is

sp -

nvp
- local s

nvp
- global numeric

nvp
- local i

nulln

0
descriptor for result

previous gfp
ilevel

L1
previous efp

efp -

.

.

.

.

.

.

.

.

.

�
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If numeric(s) fails, efp and sp are reset, so that the stack is in the same state as it was prior to
the evaluation of the expression on the first line:

sp -

.

.

.

.

.

.

.

.

.

efp -

Control is transferred to the location in the icode corresponding to L1, and the execution of

mark L2

starts a new expression frame by pushing a new expression frame marker onto the stack.
It is worth noting that failure causes only the current expression frame to be removed and

changes ipc to the failure ipc. Any remaining virtual machine instructions in the current expression
frame are bypassed; failure is simple and quick.

Failure can occur at three levels: directly from the virtual machine instruction efail, from a C
function that implements an operator or function (as in the previous example), or from an Icon
procedure.

When a conditional operator or function returns, it signals the interpreter, indicating whether it
is producing a result or failing by using one of the RTL forms of return, return or fail. These RTL
constructs simply produce return statements with different returned values.

The code in the interpreter for a conditional operation is illustrated by

case Op_Numlt: /* e1 < e2 */
Setup_Op(2);
DerefArg(1);
DerefArg(2);
Call_Cond;

The macro Call_Cond is similar to Call_Op described in Sec. 8.3.1, but it tests the signal
returned by the C function. If the signal corresponds to the production of a result, the break is
executed and control is transferred to the beginning of the interpreter loop to fetch the next virtual
machine instruction. On the other hand, if the signal corresponds to failure, control is transferred
to the place in the interpreter that handles failure, efail.
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An Icon procedure can fail in three ways: by evaluating the expression fail, by the failure of
the argument of a return expression, or by flowing off the end of the procedure body. The virtual
machine instructions generated for the three cases are similar. For example, the virtual machine
instructions for

if i < j then fail else write(j)

are

mark L1
pnull
local i
local j
numlt
unmark
pfail

L1:
global write
local j
invoke 1

The virtual machine instruction pfail first returns from the current procedure call (see Sec. 10.3),
and then transfers to efail.

9.3 Generators and Goal-Directed Evaluation

The capability of an expression not to produce a result is useful for controlling program flow and
for bypassing unneeded computation, but generators add the real power and expressiveness to the
expression-evaluation semantics of Icon. It should be no surprise that generators also present dif-
ficult implementation problems. There are several kinds of generators, including those for control
structures, functions and operators, and procedures. While the implementation of the different
kinds of generators varies in detail, the same principles apply to all of them.

As far as using a result of an expression in further computation is concerned, there is no differ-
ence between an expression that simply produces a result and an expression that produces a result
and is capable of being resumed to produce mother one. For example, in

i := numeric("2")
j := upto(’aeiou’, "Hello world")

the two assignment operations are carried out in the same way, even though upto() is a generator
and numeric() is not.
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Since such contexts cannot be determined, in general, prior to the time the expressions are eval-
uated, the implementation is designed so that the interpreter stack is the same, as far as enclosing
expressions are concerned, whether an expression returns or suspends. For the previous example,
the arguments to the assignment operation are in the same relative place in both cases.

On the other hand, if a generator that has suspended is resumed, it must be capable of continuing
its computation and possibly producing another result. For this to be possible, both the generator’s
state and the state of the interpreter stack must be preserved. For example, in

j := (i < upto(’aeiou’, "Hello world"))

when the function upto() suspends, both i and the result produced by upto() must be on the stack
as arguments of the comparison operation. However, if the comparison operation fails and upto()
is resumed, the arguments of upto() must be on the stack as they were when upto() suspended. To
satisfy these requirements, when upto() suspends, a portion of the stack prior to the arguments for
upto() is copied to the top of the stack and the result produced by upto is placed on the top of the
stack. Thus, the portion of the stack required for the resumption of upto() is preserved and the
arguments for the comparison are in the proper place.

Generator Frames. When an expression suspends, the state of the interpreter stack is pre-
served by creating a generator frame on the interpreter stack that contains a copy of the portion of
the interpreter stack that is needed if the generator is resumed. A generator frame begins with a
generator frame marker that contains information about the interpreter state that must be restored
if the corresponding generator is resumed. There are three kinds of generator frames that are dis-
tinguished by different codes:

G_Csusp suspension from a C function

G_Esusp suspension from an alternation expression

G_Psusp suspension from a procedure

For the first two types of generators, the information saved in the generator frame marker includes
the code for the type of the generator, the i-state variables efp, gfp, ipc, and the source-program line
number at the time the generator frame is created:

saved line number

saved gfp
saved ipc

generator type
saved efp

.

.

.

gfp -

The corresponding C structure is
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struct gf_marker /* generator frame marker */
word gf_gentype; /* type */
struct ef_marker *gf_efp; /* efp */
struct gf_marker *gf_gfp; /* gfp */
word *gf_ipc /* ipc */
word gf_line; /* line number */

};

Generators for procedure suspension contain, in addition, the i-state variable related to proce-
dures. See Sec. 10.3.3.

As an example, consider the expression

write(i = (1 to 3));

The virtual machine instructions for this expression are:

mark L1
global write
local i
pnull
int 1
int 3
push 1 # default increment
toby
numeq
invoke 1
unmark

L1 :

The state of the stack after execution of the first seven instructions is
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integern

1sp -

integern

3

integern

1

nulln

0
Arg0 for toby

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

previous gfp
ilevel

L1
previous efp

efp -

.

.

.

The code in the interpreter for calling a generative operator with n arguments is

rargp = (struct descrip *)(sp -1) -n;
signal = (*(optab[op]))(rargp);
goto C_rtn_term;

Note that rargp points to Arg0 and is the argument of the call to the C function for the operator.
The RTL function for toby is

operator{*} ... toby(from, to, by)
/*
* arguments must be integers.
*/

if !cnv:C_integer(from) then
runerr(101, from)

if !cnv:C_integer(to) then
runerr(101, to)

if !cnv:C_integer(by) then
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runerr(101, by)
abstract {

return integer
}

inline {
/*
* by must not be zero.
*/
if (by == 0) {

irunerr(211, by);
errorfail;
}

/*
* Count up or down (depending on relationship of from and
* to) and suspend each value in sequence, failing when
* the limit has been exceeded.
*/
if (by > 0)

for ( ; from <= to; from += by) {
suspend C_integer from;
}

else
for ( ; from >= to; from += by) {

suspend C_integer from;
}

fail;
}

end

The RTL operator construct, which is similar to function, produces the C header

int Otoby(dptr r_args)

so that toby is called with a pointer to Arg0. Arguments with logical names Arg0, Arg1, and so
forth are referred as r_args[0], r_args[1], and so on in the generated code.

When toby is called, it replaces its Arg0 descriptor by a descriptor for the integer from and
suspends by using the RTL suspend construct rather than return.

The suspend statement calls interp() instead of returning to it. This leaves the call of toby
intact with its variables preserved and also transfers control to interp() so that the next virtual
machine instruction can be interpreted. However, it is necessary to push a generator marker on
the interpreter stack and copy a portion of the interpreter stack, so that interpretation can continue
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without changing the portion of the interpreter stack that toby needs in case it is resumed. This is
accomplished by calling interp() with arguments that signal it to build a generator frame. The C
code generated for suspend is

if ((signal = interp(G_Osusp, r_args RTTCURTSTATARG)) != A_Resume) {
return signal;

}

The argument G_Osusp in the call of interp() indicates that a generator frame for C function
that implements an operator is needed. The argument r_args points to the location on the interpreter
stack where Arg0 for the suspending C function is located. This location is the same as rargp in the
call of interp() that called upto.

In this situation, interp() puts a generator frame marker on the interpreter stack and copies the
portion of the interpreter stack from the last expression or generator frame marker through cargp
onto the top of the interpreter stack:
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integern

1sp -

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

saved gfp
saved ipc
saved line number

G_Csusp
saved efp

gfp -

integern

1

integern

3

integern

1

integern

1
Arg0 for tobycargp -

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

previous gfp
ilevel

L1
previous efp

.

.

.

efp - �

The stack is exactly the same, as far as the execution of numeq is concerned, as it would have
been if toby had simply returned. However, the arguments of toby (and the preceding arguments
of numeq) are still intact, so that toby can be resumed. The generator frame is interposed between
the two portions of the interpreter stack. The top of the stack corresponds to the evaluation of

write(i = 1);
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Resumption. Suppose the value of i in the previous example is 2. The comparison fails and
control is transferred to efail, as it is in the case of all operations that fail. The code for efail is

case Op_Efail:
efail:

/*
* Failure has occurred in the current expression frame.
*/

if (gfp == 0) {
/*
* There are no suspended generators to resume. Remove
* the current expression frame, restoring values.
*
* If the failure ipc is 0, propagate failure to the
* enclosing frame by branching back to efail.
* This happens, for example, in looping control
* structures that fail when complete.
*/
ipc = efp->ef_failure;
gfp = efp->ef-9fp;
sp = (word *)efp -1;
efp = efp->ef_efp;
if (ipc == 0)

goto efail;
break;
}

else {
/*
* There is a, generator that can be resumed. Make
* the stack adjustments and then switch on the
* type of the generator frame marker.
*/
register struct gf_marker *resgfp = gfp;
tvoe = resgfp->gf gentype;
ipc = resgfp->gf_ipc;
efp = resgfp->gf_efp;
line = resgfp->gf_line;
gfp = resgfp->gf_gfp;
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sp = (word * )resgfp -1;

switch (type) {
case G_Csusp: {

--ilevel;
return A_Resumption;
break;
}

case G_Esusp:
goto efail;

case G_Psusp:
break;

}
break;
}

If there were no generator frame (if gfp were 0), the entire expression frame would be removed,
and the expression would fail as described in Sec. 9.2. However, since there is a C_Susp generator
frame, the stack is restored to the state it is in when toby suspended, and the values saved in the
generator frame marker are restored:
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sp -
integern

1

integern

3

integern

1

integern

1
Arg0 for toby

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

previous gfp
ilevel

L1
previous efp

.

.

.

efp -

All traces of the first execution of numeq have been removed from the stack. As shown by
the code for efail, the call to toby is resumed by returning to it from interp() with the signal
A_Resumption, which indicates another result is needed. When control is returned to toby, it
changes its Arg0 descriptor to the integer 2 suspends again:
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integern

1sp -

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

saved gfp
saved ipc
saved line number

G_Csusp
saved efp

gfp -

integern

1

integern

3

integern

1

integern

2
Arg0 for tobycargp -

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

previous gfp
ilevel

L1
previous efp

.

.

.

efp - �

The interpreter stack is exactly as it was when toby suspended the first time, except that the
integer 2 is on the stack in place of the integer 1. The top of the stack corresponds to the evaluation
of

write(i = 2);
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Since the value of i is 2, numeq succeeds. It copies the value of its second argument to its Arg0
descriptor and returns. The value 2 is written and the unmark instruction is executed, removing the
entire expression frame from the stack.

Goal-Directed Evaluation. Goal-directed evaluation occurs when an expression fails and there
are generator frames on the interpreter stack as the consequence of expressions that have suspended.

In the case of an expression such as

1 to upto(c, s)

upto() suspends first, followed by toby. These generator frames are linked together, with gfp point-
ing to the one for toby, which in turn contains a pointer to the one for upto(). In general, generator
frames are linked together with gfp pointing to the one for the most recent suspension. This pro-
duces the last-in, first-out (depth-first) order of expression evaluation in Icon. Goal-directed evalu-
ation occurs as a result of resuming a suspended expression when failure occurs in the surrounding
expression frame.

Removing C Frames. Since C functions that suspend call the interpreter and the interpreter in
turn calls C functions, expression evaluation typically results in a sequence of frames for calls on
the C stack. When the evaluation of a bounded expression is complete, there may be frames on the
C stack for generators, even though these generators no longer can be resumed.

In order to "unwind" the C stack in such cases, the i-state variable ilevel is used to keep track of
the level of call of interp() by C functions. Whenever interp() is called, it increments ilevel. When
an expression frame is created, the current value of ilevel is saved in it, as illustrated previously.

When the expression frame is about to be removed, if the current value of ilevel is greater than
the value in the current expression frame, ilevel is decremented and the interpreter returns with a
signal to the C function that called it to return rather than to produce another result. If the signal
returned by interp() is A_Resumption, the C function continues execution, while for any other signal
the C function returns.

Since C functions return to interp(), interp() always checks the signal returned to it to determine
if it produced a result or if it is unwinding. If it is unwinding, interp() returns the unwinding signal
instead of continuing evaluation of the current expression.

Consider again the expression

write(i = (1 to 3));

for which the virtua1 machine instructions are

mark L1
global write
local i
pnull
int 1
int 3
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push1 # default increment
toby
numeq
invoke 1
unmark

L1 :

When toby produces a result, it calls interp(). When the unmark instruction is executed, the C
stack contains a frame for the call to toby and for its call to interp(). The code for unmark is

case Op_Unmark: /* remove expression frame */
gfp = efp->ef-gfp;
sp = (word *)efp -1;
/*
* Remove any suspended C generators.
*/

Unmark_uw:
if (efp->ef_ilevel < ilevel) {

--ilevel;
return A_Unmark_uw;
}

efp = efp->ef_efp;
break;

Note that in this case Suspend gets the return code A_Unmark_uw and in turn returns
A_Unmark_uw to interp(). The section of code in interp() that checks the signal that is returned
from C functions is

C_rtn_term:
switch (signal) {
case A_Failure:

goto efail;
case A_Unmark_uw: /* unwind for unmark */

goto Unmark uw;
case A_Lsusp_uw: /* unwind for Isusp */

goto Lsusp_uw;
case A_Eret_uw: /* unwind for eret */

goto Eret_uw;
case A_Pret_uw: /* unwind for pret */

goto Pret_uw;
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case A_Pfail_uw: /* unwind for pfail */
goto Pfail_uw;

}
sp = (word * )rargp + 1; /* set sp to result */
continue;

}

Thus, when interp() returns to a C function with an unwinding signal, there is a cascade of C
returns until ilevel is the same as it was when the current expression frame was created. Note that
there are several cases in addition to unmark where unwinding is necessary.

9.4 Generative Control Structures

In addition to functions and operators that may generate more than one result, there are several
generative control structures at the level of virtual machine instructions.

9.4.1 Alternation

The virtual machine instructions for

expr2 | expr3

are

mark L1
code for expr 2

esusp
goto L2

L1:
code for expr 3

L2:

The mark instruction creates an expression frame marker for alternation whose purpose is to
preserve the failure ipc for L1 in case the results for expr3 are needed. If expr2 produces a result,
esusp creates a generator frame with the usual marker and then copies the portion of the interpreter
stack between the last expression or generator frame marker and the alternation marker to the top of
the stack. It then pushes a copy of the result produced by expr2. This connects the result produced
by expr2 with the expression prior to the alternation control structure. Next, esusp sets efp to point
to the expression frame marker prior to the alternation marker. For example, in the expression

write(i := 1 | 2)
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the stack after the execution of esusp is

integern

1sp -

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

0
saved gfp
saved ipc
saved line number

G_Esusp
- saved efp

gfp -

integern

1

0 previous gfp
ilevel

L2
- previous efp

nvp
- local i

nulln

0
Arg0 for numeq

nvp
- global write

previous gfp
ilevel

L1
previous efp

.

.

.

efp -

� ��

�

The top portion of the stack is the same as if expr2 had produced a result in the absence of alter-
nation. However, the generator frame marker pushed by esusp contains a pointer to the alternation
marker.
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If another result from expr2 is needed, the generator frame left by esusp is removed, restoring
the stack to its state when expr2 produced a result. If expr2 itself was a generator that suspended,
it is resumed. Otherwise, control is transferred to efail and ipc is set to a value corresponding to L1,
so that expr3 is evaluated next.

9.4.2 Repeated Alternation

Alternation is the general model for generative control structures. Repeated alternation, |expr, is
similar to alternation, and would be equivalent to

expr | expr | expr | ...

except for a special termination condition that causes repeated alternation to stop if expr does not
produce a result. Without this termination condition, an expression such as

|upto(c, s)

would never return if upto() failed—expression evaluation would vanish into a "black hole." Ex-
pressions that produce results at one time but not at another also are useful. For example,

|read()

generates the lines from the standard input file. Because of the termination condition, this expres-
sion terminates when the end of the input file is reached. If it vanished into a "black hole," it could
not be used safely.

If it were not for the termination condition, the virtual machine instructions for |expr would be

L1:
mark L1
code for expr
esusp

The "black hole" here is evident—if expr fails, it is evaluated again and there is no way out.
The termination condition is handled by an instruction that changes the failure ipc in the current

expression marker. The actual virtual machine instructions for |expr are

L1:
mark0
code for expr
chfail L1
esusp
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The virtual machine instruction mark0 pushes an expression frame marker with a zero failure
ipc. If a zero failure ipc is encountered during failure, as illustrated by the code for efail in Sec.
9.3, failure is transmitted to the enclosing expression. If expr produces a result, however, the chfail
instruction is executed. It changes the failure ipc in the current expression marker to correspond to
L1, so that if expr does not produce a result when it is resumed, execution starts at the location in the
icode corresponding to L1 again, causing another iteration of the alternation loop. It is important
to realize that chfail only changes the failure ipc in the current expression marker on the stack.
Subsequent execution of mark0 creates a new expression frame whose marker has a zero failure
ipc.

9.4.3 Limitation

In the limitation control structure,
expr1 \ expr2

the normal left-to-right evaluation of Icon is reversed and expr2 is evaluated first. The virtual
machine instructions are

code for expr2
limit
code for expr1
lsusp

If expr2 succeeds, its result is on the top of the stack. The limit instruction checks this result to
be sure that it is legal—an integer greater than or equal to zero. If it is not an integer, an attempt
is made to convert it to one. If the limit value is zero, limit fails. Otherwise, limit creates an
expression frame marker with a zero failure ipc and execution continues, so that expr1 is evaluated
in its own expression frame. During the evaluation of expr1, the limit value is directly below its
expression marker. For example, in

expr1 \ 10
the stack prior to the evaluation of expr1 is

previous gfp
ilevelsp -

0
previous efp

efp -

integern

10

.

.

.

If expr1 produces a result, lsusp is executed. The lsusp instruction is very similar to esusp.
Before producing a generator frame, however, lsusp decrements the limit value. If it becomes zero,
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the expression frame for expr1 is removed, the C stack is unwound, and the last value it produced
is placed on the stack in place of the limit value. Otherwise, it copies the portion of the interpreter
stack between the end of the last expression or generator frame marker and the limit value to the
top of the stack. Note that no generator frame is needed.

9.5 Iteration

The difference between evaluation and resumption in a loop is illustrated by the virtual machine
instructions for a conventional loop

while expr1 do expr2

and the iteration control structure

every expr1 do expr2

The instructions for while-do are

L1:
mark0
code for expr1
unmark
mark L1
code for expr2
unmark
goto L1

If expr1 fails, the entire expression fails and failure is transmitted to the enclosing expression
frame because the failure ipc is zero. If expr1 produces a result, expr2 is evaluated in a separate
expression frame. Whether expr2 produces a result or not, its expression frame is removed and
execution continues at the beginning of the loop.

The instructions for every-do are

mark0
code for expr1
pop
mark0
code for expr2
unmark
efail
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If expr1 fails, the entire expression fails and failure is transmitted to the enclosing expression
frame as in the case of while-do. If expr1 produces a result, it is discarded by the pop instruction,
since this result is not used in any subsequent computation. The expression frame for expr1 is not
removed, however, and expr2 is evaluated in its own expression frame within the expression frame
for expr1 (unlike the case for the while loop). If expr2 produces a result, its expression frame is
removed and efail is executed. If expr2 fails, it transmits failure to the enclosing expression frame,
which is the expression frame for expr1. If expr2 produces a result, efail causes failure in the
expression frame for expr1. Thus, the effect is the same, whether or not expr2 produces a result.
All results are produced simply by forcing failure.

If the expression frame for expr1 contains a generator frame, which is the case if expr1 sus-
pended, evaluation is resumed accordingly, so that expr1 can produce another result. If expr1 sim-
ply produces a result instead of suspending, there is no generator frame, efail removes its expression
frame, and failure is transmitted to the enclosing expression frame.

9.6 String Scanning

String scanning is one of the most useful operations in Icon. Its implementation, however, is
comparatively simple. There is no special expression-evaluation mechanism associated with string
scanning per se; all "pattern matching" follows naturally from goal-directed evaluation.

The string-scanning keywords, &subject and &pos must be handled properly, however. These
keywords have global scope with respect to procedure invocation, but they are maintained in a
stack-like fashion with respect to string-scanning expressions.

The expression

expr1 ? expr2

is a control structure, not an operation, since, by definition, the arguments for an operation are eval-
uated before the operation is performed. This form of evaluation does not work for string scanning,
since after expr1 is evaluated, but before expr2 is evaluated, the previous values of &subject and
&pos must be saved and new ones established. Furthermore, when string scanning is finished, the
old values of &subject and &pos must be restored. In addition, if string scanning succeeds, the
values of these keywords at the time string scanning produces a result must be saved so that they
can be restored if the string-scanning operation is resumed to produce another result.

The virtual machine instructions for

expr1 ? expr2

are
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code for expr1
bscan
code for expr2
escan

If expr1 succeeds, it leaves a result on the top of the stack. The bscan instruction assures that
this value is a string, performing a conversion if necessary. Otherwise, the old values of &subject
and &pos are pushed on the stack, the value of &subject is set to the (possibly converted) one
produced by expr1, and &pos is set to 1.

The bscan instruction then suspends. This is necessary in case expr2 fails, so that bscan can
get control again to perform data backtracking, restoring the previous values of &subject and &pos
from the stack where they were saved.

If expr2 succeeds, the escan instruction copies the descriptor on the top of the stack to its
Arg0 position, overwriting the result produced by expr2. It then exchanges the current values of
&subject and &pos with those saved by bscan thus restoring the values of these keywords to their
values prior to the scanning expression and at the same time saving the values they had at the time
expr2 produced a result. The escan instruction then suspends.

If escan is resumed, the values of &subject and &pos are restored from the stack, restoring the
situation to what it was when expr2 produced a result. The escan instruction then fails in order to
force the resumption of any suspended generators left by expr2.

Suppose, for example, that the values of &subject and &pos are "the" and 2 respectively, when
the following expression is evaluated:

read(f) ? move(4)

Suppose read(f) produces the string "coconuts". The stack is

8
- "coconuts"sp -

.

.

.

&subject: "the"
&pos: 2

The bscan instruction is executed, pushing the current values of &subject and &pos:
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integern

2sp -

saved &pos

3
- "the"
saved &subject

8
- "coconuts"

.

.

.

&subject: "the"
&pos: 2

The bscan instruction sets &subject to "coconuts" and &pos to 1. The bscan instruction then
suspends and move(4) is evaluated. It suspends, and the top of the stack is

integern

2
saved &pos

3
- "the"
saved &subject

8
- "coconuts"

.

.

.

4
- "coco"sp -

&subject: "coconuts"
&pos: 5

The escan instruction is executed next. It copies the descriptor on the top of the stack to replace
the result produced by expr2. It then exchanges the current values of &subject and &pos with those
on the stack:

integern

5sp -

saved &pos

8
- "coconuts"
saved &subject

4
- "coco"
result to be returned

.

.

.
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&subject: "the"
&pos : 2

The escan instruction then suspends, building a generator frame. The result of expr2 is placed
on the top of the stack, becoming the result of the entire scanning expression.

4
- "coco"sp -

.

.

.

Since escan suspends, the saved values of &subject and &pos are preserved in a generator frame
on the stack until escan is resumed or until the current expression frame is removed.

RETROSPECTIVE: The implementation of expression evaluation in Icon focuses on the concept
of an expression frame within which control backtracking can occur. Bounded expressions, for
example, are represented on the stack by expression frames, which confine backtracking.

In the absence of generators, failure simply results in the removal of the current expression
frame and transfer to a new location in the icode, bypassing instructions that otherwise would have
been executed.

State information must be saved when a generator suspends, so that its evaluation can be re-
sumed. This information is preserved in a generator frame within the current expression frame.
Generator frames are linked together in a last-in, first-out fashion. Goal-directed evaluation is a
natural consequence of resuming the most recently suspended generator when an expression fails,
instead of simply removing the current expression frame.

String scanning involves saving and restoring the values of &subject and &pos. This is some-
what complicated, since scanning expressions can suspend and be resumed, but string scanning
itself introduces nothing new into expression evaluation: generators and goal-directed evaluation
provide "pattern matching."

EXERCISES
9.1 Circle all the bounded expressions in the following segments of code:

while line := read() do
if *line = i then write(line)

if (i = find(s1,s2)) & (j = find(s1,s3)) then {
write(i)
write(j)
}
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line ? while write(move(1)) do
move(1)

9.2 Describe the effect of nested generators and generators in mutual evaluation on the inter-
preter level.

9.3 Consider a hypothetical control structure called exclusive alternation that is the same as
regular alternation, except that if the first argument produces at least one result, the results from the
second argument are not produced. Show the virtual machine instructions that should be generated
for exclusive alternation.

9.4 The expression read(f) is an example of an expression that may produce result at one time
and fail at another. This is possible because of a side effect of evaluating it—changing the position
in the file f. Give an example of an expression that may fail at one time and produce a result at a
subsequent time.

9.5 There are potential “black holes” in the expression-evaluation mechanism of Icon, despite
the termination condition for repeated alternation. Give an example of one.

9.6 The expression frame marker produced by limit makes it easy to locate the limitation
counter. Show how the counter could be located without the marker.

9.7 Suppose that the virtual machine instructions for

every expr1 do expr2

did not pop the result produced by expr1. What effect would this have?
9.8 The virtual machine instructions for

every expr

are

mark0
code for expr
pop
efail

so that failure causes expr to be resumed. The keyword &fail also fails, so that the virtual machine
instructions for

expr & &fail

are
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code for expr
efail

It is sometimes claimed that these two expressions are equivalent. If this were so, the shorter
virtual machine instruction sequence for the second expression could be used for the first expres-
sion. Explain why the two expressions are not equivalent, in general, and give an example in which
they are different.

9.9 Diagram the states of the stack for the example given in Sec. 9.6, showing all generator
frames.

9.10 Show the successive stack states for the evaluation of the following expressions, assum-
ing that the values of &subject and &pos are "the" and 2 respectively, and that read() produces
"coconuts" in each case:

(a) read(f) ? move(10)

(b) (read(f) ? move(4)) ? move(2)

(c) read(f) ? (move(4) ? move(2))

(d) (read(f) ? move(4)) ? move(10)

(e) (read(f) ? move(4 | 6)) ? move(5)

(f) (read(f) ? move(4)) & (read(f) & move(10))

9.11 Write Icon procedures to emulate string scanning. Hint: consider the virtual machine
instructions for

expr1 ? expr2



Chapter 10

Functions, Procedures, and Co-Expressions

PERSPECTIVE: The invocation of functions and procedures is central to the evaluation of expres-
sions in most programming languages. In Icon, this activity has several aspects that complicate
its implementation. Functions and procedures are data values that can be assigned to identifiers,
passed as arguments, and so on. Consequently, the meaning of an invocation expression cannot be
determined until it is evaluated. Functions and procedures can be called with more or fewer argu-
ments than expected. Thus, there must be a provision for adjusting argument lists at run time. Since
mutual evaluation has the same syntax as function and procedure invocation, run-time processing
of such expressions is further complicated.

Co-expressions, which require separate stacks for their evaluation, add complexities and depen-
dencies on computer architecture that are not found elsewhere in the implementation.

10.1 Invocation Expressions

As mentioned in Sec. 8.2.4, the virtual machine code for an expression such as

expr0(expr1, expr2, ..., exprn)

is

code for expr0
code for expr1
code for expr2
...
code for exprn
invoke n

Consequently, the stack when the invoke instruction is executed is

167
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sp -

result of exprn

.

.

.

.

.

.

result of expr2

result of expr1

result of expr0

.

.

.

The meaning of the expression, and hence the action taken by invoke, depends on the result
produced by expr0. If the value of expr0 is an integer or convertible to an integer, the invocation
expression corresponds to mutual evaluation. If this integer is negative, it is converted to the corre-
sponding positive value with respect to the number of arguments, If the value is between one and
n, the corresponding descriptor is copied on top of the result of expr0, sp is set to this position, and
invoke transfers control to the beginning of the interpretive loop. On the other hand, if the value is
out of range, invoke fails. Note that the returned value overwrites the descriptor for expr0, whereas
for operators a null-valued descriptor is pushed to receive the value.

If the value of expr0 is a function or a procedure, the corresponding function or procedure must
be invoked with the appropriate arguments. A function or procedure value is represented by a
descriptor that points to a block that contains information about the function or procedure.

10.2 Procedure Blocks

Functions and procedures have similar blocks, and there is no source-language type distinction
between them.

Blocks for Procedures. Blocks for procedures are constructed by the linker, using information
provided by the translator. Such blocks are read in as part of the icode file when an Icon program is
executed. The block for a procedure contains the usual title and size words, followed by five words
that characterize the procedure:

(1) The icode location of the first virtual machine instruction for the procedure.

(2) The number of arguments expected by the procedure.
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(3) The number of local identifiers in the procedure.

(4) The number of static identifiers in the procedure.

(5) The index in the static identifier array of the first static identifier in the procedure.

The remainder of the procedure block contains qualifiers: one for the string name of the pro-
cedure, then others for the string names of the arguments, local identifiers, and static identifiers, in
that order.

For example, the procedure declaration

procedure calc(i,j)
local k
static base, index

...
end

has the following procedure block:

0 index of first static identifier

1
2

number of local identifiers
number of static identifiers

2 number of arguments

76
- initial ipc
size of block

proc

5
- "index"

4
- "base"

1
- "k"

1
- "j"

1
- "i"

4
- "calc"
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The 0 value for the index in the static identifier array indicates that base is the first static iden-
tifier in the program. The indices of static identifiers are zero-based and increase throughout a
program as static declarations occur.

Blocks for Functions. Blocks for functions are created by the macro FncDcl that occurs at
the beginning of every C function that implements an Icon function. Such blocks for functions
are similar to those for procedures but are distinguished by the value -1 in the word that otherwise
contains the number of local identifiers. The entry point is the entry point of the C routine for the
function. The procedure block for repl is typical:

0
0

not used
not used

2
-1

number of arguments
function indicator

36
- C entry point
size of block

proc

4
- "repl"

Note that there are no argument names.
Some functions, such as write(), allow an arbitrary number of arguments. This is indicated by

the value -1 in place of the number of arguments:

0
0

not used
not used

-1
-1

indicator of a variable number of arguments
function indicator

36
- C entry point
size of block

proc

5
- "write"

10.3 Invocation

10.3.1 Argument Processing

Argument processing begins by dereferencing the arguments in place on the stack. If a fixed number
of arguments is specified in the procedure block, this number is compared with the argument of
invoke, which is the number of arguments on the stack.
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If there are too many arguments, sp is set to point to the last one expected. For example, the
expression

numeric(i, j)

results in

sp -

nvp
- local j

nvp
- local i

nvp
- global numeric

.

.

.

Since numeric() expects only one argument, sp is reset, effectively popping the second argument:

sp -

nvp
- local j

nvp
- local i

nvp
- global numeric

.

.

.

On the other hand, if there are not enough arguments, null-valued descriptors pushed to supply the
missing arguments. For example, the expression

left(s, i)

results in

sp -

nvp
- local i

nvp
- local s

nvp
- global left

.

.

.

and a null value is pushed to provide the missing third argument:
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nvp
- local i

nvp
- local s

nvp
- global left

.

.

.

nulln

0sp -

10.3.2 Function Invocation

Function invocation involves calling a C function in a fashion that is very similar to evaluating an
operator. In the case of an Icon function, the entry point of the corresponding C function is obtained
from the procedure block rather than by indexing an array of function pointers corresponding to
operator codes.

For an Icon function that has a fixed number of arguments, the C function is called with a
single argument that is a pointer to the location of Arg0 on the interpreter stack. Note that Arg0
is the descriptor that points to the procedure block. For an Icon function that may be called with
an arbitrary number of arguments, the C function is called with two arguments: the number of
arguments on the stack and a pointer to Arg0.

Like an operator, a function may fail, return a result, or suspend. The coding protocol is the
same as for operators. The function find is an example:

function{*} find(s1,s2,i,j)
str_anal( s2, i, j )
if !cnv:string(s1) then

runerr(103,s1)
body {

register char *str1, *str2;
C_integer s1_len, l, term;

/*
* Loop through s2[i:j] trying to find s1 at each point,
* stopping when the remaining portion s2[i:j] is too short
* to contain s1. Optimize me!
*/
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s1_len = StrLen(s1);
term = cnv_j - s1_len;
while (cnv_i <= term) {

str1 = StrLoc(s1);
str2 = StrLoc(s2) + cnv_i - 1;
l = s1_len;

/*
* Compare strings on a byte-wise basis; if the end is
* reached before inequality is found, suspend with the
* position of the string.
*/

do {
if (l-- <= 0) {

suspend C_integer cnv_i;
break;
}

} while (*str1++ == *str2++);
cnv_i++;
}

fail;
}

end

str_anal() is an RTL multi-line macro for performing the standard conversions and defaulting
for string analysis functions. It takes as arguments the parameters for subject, beginning position,
and ending position. It produces declarations for these 3 names prepended with cnv_. These
variables will contain the converted versions of the arguments.

#begdef str_anal(s, i, j)
declare {

C_integer cnv_ ## i;
C_integer cnv_ ## j;
}

abstract {
return integer
}
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if is:null(s) then {
inline {

s = k_subject;
}

if is:null(i) then inline {
cnv_ ## i = k_pos;
}

}
else {

if !cnv:string(s) then
runerr(103,s)

if is:null(i) then inline {
cnv_ ## i = 1;
}

}

if !is:null(i) then
if cnv:C_integer(i,cnv_ ## i) then inline {

if ((cnv_ ## i = cvpos(cnv_ ## i, StrLen(s))) == CvtFail)
fail;

}
else

runerr(101,i)

if is:null(j) then inline {
cnv_ ## j = StrLen(s) + 1;
}

else if cnv:C_integer(j,cnv_ ## j) then inline {
if ((cnv_ ## j = cvpos(cnv_ ## j, StrLen(s))) == CvtFail)

fail;
if (cnv_ ## i > cnv_ ## j) {

register C_integer tmp;
tmp = cnv_ ## i;
cnv_ ## i = cnv_ ## j;
cnv_ ## j = tmp;
}

}
else

runerr(101,j)
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#enddef

10.3.3 Procedure Invocation

In the case of procedure invocation, a procedure frame is pushed onto the interpreter stack to
preserve information that may be changed during the execution of the procedure and that must be
restored when the procedure returns. As for other types of frames, a procedure frame begins with a
marker. A procedure frame marker consists of eight words:

saved line number
saved ilevel

saved argp
saved ipc

saved efp
saved gfp

number of arguments
saved pfp

.

.

.

pfp -

The current procedure frame is pointed to by pfp, and argp points to the place on the interpreter
stack where the arguments begin, analogous to Arg0 for functions. The number of arguments,
which can be computed from pfp and argp, is provided to make computations related to arguments
more convenient.

After the procedure marker is constructed, a null-valued descriptor is pushed for each local
identifier. For example, the call

calc(3,4)

for the procedure declaration given in Sec. 10.2 produces
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nulln

0sp -
value of local k

saved line number
saved ilevel

saved argp
saved ipc

saved efp
saved gfp

2 number of arguments
saved pfp

pfp -

integern

4
value of argument j

integern

3
value of argument i

procnp
- procedure block for calc

argp -

.

.

.

Once the null values for the local identifiers are pushed, ipc is set to the entry point given in the
procedure block and efp and gfp are set to zero. Execution then continues in the interpreter with
the new ipc.

The three forms of return from a procedure are the same as those from a function and correspond
to the source-language expressions

return e
fail
suspend e

The corresponding virtual machine instructions are pret, pfail, and psusp. For example, the
virtual machine code for

return &null

is

pnull
pret

In the case of pret, the result currently on the top of the interpreter stack is copied on top of the
descriptor pointed to by argp. If this result is a variable that is on the stack (and hence local to the
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current procedure call), it is dereferenced in place. The C stack is unwound, since there may be
suspended generators at the time of the return. The values saved in the procedure frame marker are
restored, and execution continues in the interpreter with the restored ipc.

In the case of failure, the C stack is unwound as it is for pret, values arc restored from the
procedure frame marker, and control is transferred to efail.

Procedure suspension is similar to other forms of suspension. The descriptor on the top of the
interpreter stack is dereferenced, if necessary, and saved. A generator frame marker is constructed
on the interpreter stack to preserve values that may be needed if the procedure call is resumed. For
procedure suspension, a generator frame marker contains two words in addition to those needed for
other kinds of generator frame markers and has the form

saved pfp
saved argp

saved ipc
saved line number

saved efp
saved gfp

G_Psusp generator type

.

.

.

After the generator frame marker is pushed, the portion of the stack between the last generator
or expression frame marker before the call to this procedure and the word prior to argp is copied to
the top of the stack. Finally, the saved descriptor, which is the result produced by the procedure, is
pushed on the top of the stack. Execution then continues in the interpreter with the restored ipc.

10.4 Co-Expressions

Co-expressions add another dimension to expression evaluation in Icon. The important thing to
understand about co-expressions is that Icon evaluation is always in some co-expression. Although
it is not evident, the execution of an Icon program begins in a co-expression, namely the value of
&main.

A co-expression requires both an interpreter stack and a C stack. In the co-expression for
&main, the interpreter stack is statically allocated and the C stack is the one normally used for C
execution–the "system stack" on some computers. The creation of a new co-expression produces
a new interpreter stack and a new C stack, as well as space that is needed to save state informa-
tion. When a co-expression is activated, the context for evaluation is changed to the stacks for the
activated co-expression. When the activation of a co-expression produces a result, it in turn acti-
vates the co-expression that activated it, leaving the stacks from which the return occurred in a state
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of suspension. Thus, co-expression activation constitutes a simple context switch. In every co-
expression, expression evaluation is in some state, possibly actively executing, possibly suspended,
or possibly complete and unreachable.

The virtual machine instructions for

create expr0

are

goto L3
L1:

pop
mark L2
code for expr0

coret
efail

L2:
cofail
goto L2

L3:
create L1

Control goes immediately to L3, where the instruction create constructs a co-expression block
and returns a descriptor that points to it. This block contains space for i-state variables, space for
the state of the C stack, an interpreter stack, and a C stack.

The code between L1 and L3 is not executed until the co-expression is activated. The pop
instruction following L1 discards the result transmitted to a co-expression on its first activation,
since there is no expression waiting to receive the result of an initial activation. Next, an expression
frame marker is created, and the code for expr0 is executed. If expr0 produces a result, coret is
executed to return the result to the activating expression. If the co-expression is activated again,
its execution continues with efail, which causes any suspended generators in the code for expr0

to be resumed. If expr0 fails, the expression frame is removed and cofail is executed. The cofail
instruction is very similar to the coret instruction, except that it signals failure rather than producing
a result. Note that if a co-expression that returns by means of cofail is activated again, the cofail
instruction is executed in a loop.

A co-expression is activated by the expression

expr1 @ expr2

for which the virtual machine code is
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code for expr1
code for expr2
coact

The more common form of activation, @expr0, is just an abbreviation for &null @ expr0; a
result is always transmitted, even if it is the null value.

The virtual machine code for expr1 produces the descriptor for the result that is to be transmitted
to the co-expression being activated. The coact instruction dereferences the result produced by
expr2, if necessary, and checks to make sure it is a co-expression. After setting up state information,
coact transfers control to the new co-expression with ipc set to L1. Execution continues there. If
coret is reached, control is restored to the activating co-expression. The instructions coact and coret
are very similar. Each saves the current co-expression state, sets up the new co-expression state,
and transfers control.

Co-Expression Blocks. There is quite a bit of information associated with a co-expression, and
space is provided for it in a co-expression block:
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C stack

interpreter stack

cstate

cstate[0] (saved C sp)
cstate[1]

refreshnp
- refresh block

nulln

0
most recent activator

saved sp
pointer to transmitted value

saved line number
saved ilevel

saved argp
saved ipc

saved efp
saved gfp

pointer to next co-expression block
saved pfp

coexpr title
size

coexprnp
-

The interpreter stack and C stack shown in this diagram are not to scale compared with the rest
of the block. Both are comparatively large; the actual sizes depend on the address space of the
target computer.

The first word of the block is the usual title. The next word contains the number of results the
co-expression has produced-its "size." Then there is a pointer to the next co-expression block on
a list that is maintained for garbage collection purposes. See Sec. 11.3.4. Following this pointer
there are i-state variables: pfp, efp, gfp, argp, ipc, sp, the current program line number, and ilevel.

Then there is a descriptor for the transmitted result, followed by two more descriptors: one for
the co-expression that activates this one and one for a refresh block that is needed if a copy of this
co-expression block is needed. C state information is contained in an array of words, cstate, for
registers and possibly other state information. The array cstate typically contains fifteen words
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for such information. The C sp is stored in cstate[0]. The use of the rest of cstate is machine-
dependent.

Finally, there is an interpreter stack and a C stack. On a computer with a downward-growing
C stack, such as the VAX, the base of the C stack is at the end of the co-expression block and the
interpreter and C stacks grow toward each other. On a computer with an upward-growing C stack,
the C stack base follows the end of the interpreter stack.

Stack Initialization. When a co-expression is first activated, its interpreter stack must be in an
appropriate state. This initialization is done when the co-expression block is created. A procedure
frame, which is a copy of the procedure frame for the procedure in which the create instruction
is executed, is placed on the new stack. It consists of the words from argp through the procedure
frame marker and the descriptors for the local identifiers. The efp and gfp in the co-expression
block are set to zero and the ipc is set to the value given in the argument to the create instruction
(L1).

No C state is set up on the new C stack; this is handled when the co-expression is activated the
first time. The initial null value for the activator indicates the absence of a valid C state.

Co-Expression Activation. As mentioned previously, coact and coret perform many similar
functions—both save current state information, establish new state information, and activate an-
other co-expression. The current i-state variables are saved in the current co-expression block, and
new ones are established from the co-expression block for the co-expression being activated. Sim-
ilar actions are taken for the C state. Since the C state is machine-dependent, the "context switch"
for the C state is performed by a routine, called coswitch(), that contains assembly-language code.

The C state typically consists of registers that are used to address the C stack and registers that
must be preserved across the call of a C function. On the VAX, for example, the C stack registers
are sp, ap, and fp. Only the registers r6 through r11 must be saved for some C compilers, while
other C compilers require that r3 through r11 be saved. Once the necessary registers are saved in
the cstate array of the current co-expression, new values of these registers are established. If the
co-expression being activated has been activated before, the C state is set up from its cstate array,
and coswitch() returns to interp(). At this point, execution continues in the newly activated co-
expression. Control is transferred to the beginning of the interpreter loop, and the next instruction
(from the ipc for the co-expression) is fetched.

However, when a co-expression is activated for the first time, there are no register values to re-
store, since no C function has yet been called for the new co-expression. This is indicated, as men-
tioned previously, by a null activator, which is communicated to coswitch() by an integer argument.
In this case, coswitch() sets up registers for the call of a C function and calls interp() to start the
execution of the new co-expression. Such a call to interp() on the first activation of a co-expression
corresponds to the call to interp() that starts program execution in the co-expression &main for the
main procedure. There can never be a return from the call to interp() made in coswitch(), since
program execution can only terminate normally by a return from the main procedure, in &main.

The function coswitch() is fastest if it is machine-dependent. The version for the x86 with the
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GCC compiler is an example:

coswitch:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl %esp,0(%eax)
movl %ebp,4(%eax)
movl 12(%ebp),%eax
cmpl $0,16(%ebp)
movl 0(%eax),%esp
je .L2

movl 4(%eax),%ebp
jmp .L1

.L2:
movl $0,%ebp
pushl $0
pushl $0
call new_context
pushl $.LC0
call syserr
addl $12,%esp

.L1:
leave
ret

If no assembler co-expression switch is available, modern platforms with POSIX threads can
use Icon 9.5.1’s supported form of co-expressions, which is more than 100x slower and approxi-
mately twice as many lines of C. The public interface in either case looks like:

int coswitch(void *old_cs, void *new_cs, int first);

The variables old_cs and new_cs are pointers to the cstate arrays for the activating and activated
co-expressions, respectively. The value of first is 0 if the co-expression is being activated for the
first time. Note that in order to write coswitch() it is necessary to know how the first two arguments
are accessed in assembly language. For the previous example, old_cs and new_cs are eight and
twelve bytes from the ebp register, respectively.
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Refreshing a Co-Expression. The operation ˆexpr0 creates a copy of the co-expression pro-
duced by expr0 with its state initialized to what it was when it was originally created. The refresh
block for expr0 contains the information necessary to reproduce the initial state. The refresh block
contains the original ipc for the co-expression, the number of local identifiers for the procedure in
which expr0 was created, a copy of the procedure frame marker at the time of creation, and the
values of the arguments and local identifiers at the time of creation. Consider, for example,

procedure labgen(s)
local i, j, e
i := 1
j := 100
e := create (s || (i to j) || ":")

end

For the call labgen("L"), the refresh block for e is

nulln

0
value of e

integern

100
value of j

nulln

1
value of i

1
- "L"
value of s

procn
- procedure block
value of labgen

saved line number
saved ilevel

saved argp
saved ipc

saved efp
saved gfp

saved number of arguments
saved pfp

3
initial ipc
number of local identifiers

refresh
88

title
size of block
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RETROSPECTIVE: Invocation expressions are more complicated to implement than operators,
since the meaning of an invocation expression is not known until it is evaluated. Since functions
and procedures are source-language values, the information associated with them is stored in blocks
in the same manner as for other types.

The C code that implements Icon functions is written in the same fashion as the code for op-
erators. Procedures have source-language analogs of the failure and suspension mechanisms used
for implementing functions and operators. Procedure frames identify the portions of the interpreter
stack associated with the procedures currently invoked.

A co-expression allows an expression to be evaluated outside its lexical site in the program by
providing separate stacks for its evaluation. The possibility of multiple stacks in various states of
evaluation introduces technical problems in the implementation, including a machine-dependent
context switch.

EXERCISES
10.1 What happens if a call of a procedure or function contains an extra argument expression,

but the evaluation of that expression fails?
10.2 Sometimes it is useful to be able to specify a function or procedure by means of its string

name. Icon supports "string invocation," which allows the value of expr0 in

expr0(expr1, expr2, ..., exprn)

to be a string. Thus,

"write"(s)

produces the same result as

write(s)

Of course, such a string name is usually computed, as in

(read())(s)

Describe what is involved in implementing this aspect of invocation. Operators also may be
invoked by their string names, as in

"+"(i,j)

What is needed in the implementation to support this facility? Can a control structure be invoked
by a string name?

10.3 If the result returned by a procedure is a variable, it may need to be dereferenced. This is
done in the code for pret and psusp. For example, if the result being returned is a local identifier,
it must be replaced by its value What other kinds of variables must be dereferenced? Is there any
difference in the dereferencing done by pret and psusp?

10.4 How is the structure of a co-expression block different on a computer with an upward-
growing C stack compared to one with a downward-growing C stack? What is the difference
between the two cases in terms of potential storage fragmentation?



Chapter 11

Records and Classes

PERSPECTIVE: Records are fixed size data aggregates where each component (field) is named.
Icon’s records look superficially similar to records in other languages but, as with other data struc-
tures, there is a lot going on behind the scenes. Much of the complication arises because the
translator is unable to check whether a particular field name is correct until run time. For some
methods of access the field name is not known until run time, precluding the possibility of compile
time checking altogether. Information about the order of fields and their names must therefore be
present at run time. This information is stored in the record descriptor block for each record, which
contains the string field names in order. For efficiency, it is also stored centrally in a global field
table which is used by the field reference operator to select the correct field in each record.

Unicon allows new record types to be constructed at run time, which is particularly useful in
database applications. Internally, it uses a slight extension of Icon’s record type to implement
classes, which add further to the information required in the descriptor.

11.1 Records

Much of the implementation of records has already been mentioned, in passing, in earlier sections
where a record was used as one of the example data structures – see, for example, page 51. What
has been missing, until now, is a description of the record constructor block. Record constructors
are a kind of procedure, so the record constructor block is a special case procedure block that
provides alternative names and uses for some of the fields.

/*
* Alternate uses for procedure block fields, applied to records.
*/
#define nfields nparam /* number of fields */
#define recnum nstatic /* record number */
#define recid fstatic /* record serial number */
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#define recname pname /* record name */

A central data structure called the field table (described later in section 11.3) allows constant
time access to fields by name; all field names used in the dot operator are compiled down to integer
subscripts within the field table, which maps their positions for all record types known at link time.

Here is the full picture, including a record constructor, of how the example previously given on
page 51 looks if it is constructed dynamically by

point := constructor("complex", "r", "i")(1,3)

recordnp
- record

32
title
size of block in bytes

id
- record constructor

�

-

integern

1
integern

3

1 record serial number

-2
-1 record number‡

2 number of fields
record indicator†

52
- entry point of the library routine to create a record (mkrec)
size of block

proc

1
- "i"

1
- "r"

7
- "complex"

†The ndynam field (labelled as “record indicator” above) serves multiple purposes, depending on
whether it is describing a procedure, a builtin function, a record or a class. Its value is described in
the following table.
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0 . . . n Unicon procedure with n parameters

-1 Builtin function

-2 Record

-3 Class

‡Dynamically created records have a record number of -1, which indicates that they have no field
table entry.

11.2 Classes

The “heavy lifting” to implement classes is done by the Unicon translator; in the runtime system,
the field reference operator provides a minor assist. Within the runtime system, a class is, to a first
approximation, just a pair of record types. Objects are instances of a primary record type that has
some extra (hidden) fields. Thus, most of the time when the runtime system needs to distinguish
between a class object and a record, it is to hide the extra fields. For example, in the image builtin
function, care is taken not to output the values of the __m and __s fields. In the size function, they
are subtracted from the total count of fields etc. The additional code for size is typical

operator1 * size(x)
abstract {

return integer
}
type_case x of {

. . .
record: inline {

C_integer siz;
union block *bp, *rd;
bp = BlkLoc(x);
rd = Blk(bp,Record)->recdesc;
siz = Blk(BlkD(x,Record)->recdesc,Proc)->nfields;

/*
* if the record is an object, subtract 2 from the size
*/

if (Blk(rd,Proc)->ndynam == -3) siz -= 2;
return C_integer siz;

}
. . .
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When referencing the fields by field number, care has to be taken to skip over the hidden fields
by adding 2 to the index. The ? and ! operators must also take the hidden fields into account when
their operand is a class.

11.2.1 Definitions made by a class declaration

When a class (called, for example, foo) is declared, two record types are created called
foo__methods and foo__state. foo__methods, as the name suggests, is a vector of procedure de-
scriptors, one for each method declared within the class and its superclasses. A singleton instance
of foo__methods is shared by all foo objects. foo__state contains the descriptors for the fields of
the class, prepended with two extra fields __s and __m at the start of the vector.

__m is used by the field reference operator when selecting a method for subsequent invocation.
__s is self reference and is seemingly more vestigial1: its continued presence remains to be justified
and it might be removed someday.

The complete list of additional reserved identifiers introduced by a declaration of a class called
foo is given below

foo__state

foo__methods

foo_bar for each method bar defined in the class. In the current implementation,
these definitions allow a method to be called as a procedure from Icon code.
When doing so, the class instance must be supplied as the first parameter.
E.g. given an instance f of foo that has a method bar defined with two pa-
rameters, it may be called by foo_bar(f,a,b), which is completely equivalent
to the usual f.bar(a,b).

fooinitialize The name given to the code defined by the initially section of the class. The
name is present even if the initially section is absent.

foo__oprec The (global) name for the methods vector of foo. Used by the oprec standard
function to search through the list of globals for the correct methods vector.

11.3 The Field Table

The field table is two-dimensional array that maps field names (which are converted into integer
indices during code generation) to positions of descriptors within all of the record types known at
link time. It provides constant-time access to record fields that is even faster than list subscripting.

1Unicon’s predecessor Idol used __s to implement the notion that object fields were private and not accessible
outside the methods of a class. When Unicon eventually rejected this departure from Icon’s record semantics, much of
the need for __s vanished.
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The size of the field table can be a problem when the available address space and memory
are limited; some large programs with many records or classes2 have even failed to run on small-
memory platforms due to space requirements. The problem is now a potential performance issue
rather than a matter of crashing with an out of memory error.

The field table, which is placed in the icode by the back end code generator and linker icont,
is a two dimensional (N×M ) array of numbers where M is the total number of record types –
including records defined by class definitions – and N is the total number of field names. The array
contains the field offset, an index into an array of slots in the record, for each field name in each
record type that is in use3 in the program. If a particular record type does not have that field, -1 is
stored at that position in the table. For example

record a (m, n, o, p)
record b (o, p, q, r)
record c (s, t, u, m)

has a resulting field table of

a b c

m 0 -1 3

n 1 -1 -1

o 2 0 -1

p 3 1 -1

q -1 2 -1

r 1 3 -1

s -1 -1 0

t -1 -1 1

u -1 -1 -2

The field table also includes the fields from the record types that are generated as a result of
class declarations, so both the names of the fields in a class and the names of the class methods
contribute to N (and each class declaration adds 2 to M ). It is instructive to compare the field table

2 The use of large class libraries, such as in programs that implement graphical interfaces, make the space occupied
by the field table dramatically worse. Every referenced class introduces two record types, and while a program might
not itself use that many fields, the methods of all referenced classes are also fields – they have to be because the
compiler cannot know whether rec.f(1) is actually using a field called f to store a procedure or whether it is invoking
the f method of rec – and there are lots of programs that contain hundreds, if not thousands of methods.

3 Record (or class) declarations that are not used anywhere are optimized by the linker and omitted from the field
table, but this optimization may be conservative and imperfect.
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above with the corresponding example where the records have been converted to classes (and one
method added)

class a (m, n, o, p); method x(); end; end
class b (o, p, q, r); end
class c (s, t, u, m); end

The field table that results is

a__state a__methods b__state b__methods c__state c__methods

__s 0 -1 0 -1 0 -1

__m 1 -1 1 -1 1 -1

m 2 -1 -1 -1 5 -1

n 3 -1 -1 -1 -1 -1

o 4 -1 2 -1 -1 -1

p 5 -1 3 -1 -1 -1

x -1 0 -1 -1 -1 -1

q -1 -1 4 -1 -1 -1

r -1 -1 5 -1 -1 -1

s -1 -1 -1 -1 2 -1

t -1 -1 -1 -1 3 -1

u -1 -1 -1 -1 4 -1

The number of columns is increased, because of the extra records, and method names are inter-
mixed with field names.

The information needed for the field table is accumulated by the linker as it processes the ucode
files that make up the program. When it encounters a record declaration the name of each field
is stored (together with its offset within the record type). Every time the linker encounters a field
instruction, it replaces the name of the field with the integer position of that name in the list of field
names. Some field references may not be contained in any declared record type – because it might
be a dynamically created record, or it could just be plain wrong – in this case the linker adds the
field name to the global list of field names but does not add the field name to the field table and
replaces the name of the field with the position of the name, relative to the end of the name list
(so the number is negative). The negative number is a signal to the field reference operator that the
field table is not in use for this access.

Although the field table is fast, it is sparse. Programs may have many record types, most of
which will not share field names, so the table will contain a high proportion of -1 entries corre-
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sponding to all the types where a particular field name is not defined. Unicon has further optimiza-
tions that can reduce the size of the table. It does this first by reducing the size of each entry: if no
record in the entire program has more than 254 fields then each element of the field table can be a
byte, rather than a 16 bit (or 32 bit) integer – although one bad actor with 255 fields will spoil it for
everyone. Secondly, it reduces the number of -1 entries in the table by suppressing the leading and
trailing -1 entries in each row and using some clever indexing and packing.

UTR23 has the details of the compression mechanisms, which are enabled by building the Uni-
con system with FieldTableCompression defined. Note that the format of the icode file is different
when the compression is enabled and has a different icode version – programs built with compres-
sion enabled are not executable on systems that do not have compression enabled, and vice-versa.

On modern platforms with large amounts of available memory, the pressing need to “squeeze”
the program into the space available has receded; but as Wirth4 once wisely remarked

We do not consider it good engineering practice to consume a resource lavishly just
because it happens to be cheap.

economical designs are still worth pursuing.
The FieldTableCompression optimizations described in UTR23 are not enabled by default be-

cause they incur a small run-time penalty from the extra indexing that is needed to implement the
compression. The option is in the source code in case Unicon is needed on some platform where
space once again becomes an overriding concern.

11.4 The field reference operator

The field reference operator, as with many other operators in the runtime system, conceals some
complexity behind its apparently simple appearance. Exactly the same code is emitted to access the
fields of a record (both declared records and dynamically created records), for access to the fields
of a class and also for access to the class methods: it is up to the field reference operator to sort out
what is needed.

The operator is called with two parameters on the stack: a descriptor for the record (or class) that
is being referenced and an integer that describes which field is required. In the most straightforward
case – the linker has replaced the field name by a positive number n, so the field name is described
by row n of the field table – the operator recovers the record sequence number m from the record
descriptor which gives the column number in the field table. The field offset may then be retrieved
directly from the field table.

fnum = ftabp[IntVal(Arg2) * *records + Blk(rp->recdesc,Proc)->recnum - 1];
4 Niklaus Wirth, discussing the programming language (and operating system) Oberon.



192

Arg2 is the second parameter (n); *records contains the number of record types in the field table;
the recnum field from the descriptor determines m.

The record descriptor that is supplied for classes is the class__state record, so field access for
classes works exactly the same as for records. But when the access is for a method, the field offset
returned by the calculation above will be -1, because the method name is not (usually5) in the
class__state record. In this case the operator checks if the record is actually a class and, if so, tries
again, but with the __m field of the class as the record descriptor. Only if this also returns -1 will
an error be raised.

The final case is when the linker has not been able to determine a field name entry in the field
table from its collection of record declarations. In this case, it places a negative number in the
second parameter and this is used at run time to pick up the name from the global list of field
names. If the record has been dynamically constructed, the field reference operator then makes
a sequential search through the list of field names (see the diagram on page 186) using string
comparison to determine whether or not the field name belongs to the record.

RETROSPECTIVE: Access to the fields of a class is the same as for a record. The field table
provides excellent speed access for record types and field names known at link time. Dynamic
record types resort to sequential search and string comparison. Some extra code is needed to
conceal the “hidden” fields of a class, but the total increase is small.

EXERCISES
11.1 Discuss the pros and cons of replacing the two record definitions for a class by a single defi-
nition that contains both the field names and the method names.
11.2 Could Unicon provide dynamically created classes? What would be the advantages?

5Unicon does not prohibit the name of a field in a class being the same name as a method. But having such a field
means that the method can never be accessed via the field reference operator – the field will be returned instead of the
method – the method may still be accessed using its global name via the foo_methodname( . . . ) syntax.



Chapter 12

Storage Management

Editorial Note: the implementation of storage management has transformed over time
as computer hardware capabilities have changed. Despite this, the main principles of
Icon and Unicon’s garbage collector are unmodified after several decades.

PERSPECTIVE: The implementation of storage management must accommodate a wide range
of allocation requirements. At the same time, the implementation must provide generality and some
compromise between “normal” programs and those that have unusual requirements. Although it
is clearly sensible to satisfy the needs of most programs in an efficient manner, there is no way to
define what is typical or to predict how programming style and applications may change. Indeed,
the performance of the implementation may affect both programming style and applications.

Strings and blocks can be created during program execution at times that cannot be predicted,
in general, from examination of the text of a program. The sizes of strings and of some types of
blocks may vary and may be arbitrarily large, although practical considerations dictate some limits.
There may be an arbitrary number of strings and blocks. The “lifetimes” during which they may
be used are arbitrary and are unrelated, in general, to procedure calls and returns.

Different programs vary considerably in the number, type, and sizes of data objects that are
created at run time. Some programs read in strings, transform them, and write them out without
ever creating other types of objects. Other programs create and manipulate many lists, sets, and
tables but use few strings. Relatively few programs use co-expressions, but there are applications
in which large numbers of co-expressions are created.

Since a program can construct an arbitrary number of data objects of arbitrary sizes and life-
times, some mechanism is needed to allow the reuse of space for “dead” objects that are no longer
accessible to the program. Thus, in addition to a mechanism for allocating storage for objects at run
time, there must be a storage-reclamation mechanism, which usually is called garbage collection.
The methods used for allocation and garbage collection are interdependent. Simple and fast allo-
cation methods usually require complex and time-consuming garbage-collection techniques, while
more efficient garbage-collection techniques generally lead to more complex allocation techniques.
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Storage management has influences that are far-reaching. In some programs, it may account
for a major portion of execution time. The design of data structures, the layout of blocks, and the
representation of strings are all influenced by storage-management considerations. For example,
both a descriptor that points to a block and the first word of the block contain the same type code.
This information is redundant as far as program execution is concerned, since blocks are accessed
only via descriptors that point to them. The redundant type information is motivated by storage-
management considerations. During garbage collection, it is necessary to access blocks directly,
rather than through pointers from descriptors, and it must be possible to determine the type of a
block from the block itself. Similarly, the size of a block is of no interest in performing language
operations, but the size is needed during garbage collection. Blocks, therefore, carry some “over-
head” for storage management. This overhead consists primarily of extra space, reflecting the fact
that it takes more space to manage storage dynamically than would be needed if space were allo-
cated statically. Balancing space overhead against efficiency in allocating and collecting objects is
a complex task.

Such problems have plagued and intrigued implementors since the early days of LISP. Many
ways have been devised to handle dynamic storage management, and some techniques have been
highly refined to meet specific requirements (Cohen 1981). In the case of Icon, there is more
emphasis on storage management for strings than there is in a language, such as LISP, where
lists predominate. Icon’s storage-management system reflects previous experience with storage-
management systems used in XPL (McKeeman, Horning, and Wortman 1970), SNOBOL4 (Hanson
1977), and the earlier Ratfor implementation of Icon (Hanson 1980). The result is, of course,
somewhat idiosyncratic, but it provides an interesting case study of a real storage-management
system.
A brief history of Icon’s storage management
The main changes in the overall approach to storage management since version 6 have been in the
treatment of the Allocated Storage areas, which is discussed in section 11.1 below. Since different
programs have different memory usage patterns, the main issues have always been: how much
memory to set aside, and when, for the different uses of allocated memory.

Icon V6 Originally, Icon expected to control all memory itself. Allocated storage was
a single contiguous memory extent. On some systems, it could be expanded
using the UNIX sbrk() system call.

Icon V7 In order to port Icon widely, an alternative that did not depend on sbrk() was
developed in which the allocated storage was split into three fixed size extents
(static, string and block).
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Icon V8 The Icon compiler iconc introduced improvements to storage handling. Inter-
nally, pointers replace many descriptors in blocks, saving space. The process
of registering tended variables with the garbage collector becomes organized
and gains syntactic support via RTL. For the sake of systems like MS-DOS,
which had 64K allocation limits, multiple string or block storage regions are
allocated if garbage collection fails to provide enough free space to satisfy an
allocation request. Storage regions that are full may subsequently have space
freed and be reused.

Icon V9 By this point, sbrk() is abandoned and multiple, fixed regions are standard.

Unicon
Each thread uses its own string and block storage regions for allocation. A
thread that performs garbage collection must first suspend every other thread
before proceeding.

12.1 Memory Layout

During the execution of an Icon program, memory is logically divided into several areas based
on how the memory is used. The word “region” may generically refer to the different sections in
the diagram; in the implementation, it is used more specifically to refer to individually-allocated
chunks of memory within the allocated storage area.

The sizes and locations of memory regions are dependent on computer architecture and the
operating system used, but typically they have the following form:

run-time system

icode

allocated storage

free space

system stack

This diagram is not drawn to scale; some regions are much larger than others. It is also an
abstraction; the regions might or might not be contiguous, and each is allocated seperately. The
free space is managed by the underlying operating system rather than by the Icon runtime.
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The Run-Time System. The run-time system contains the executable code for the interpreter,
built-in operators and functions, support routines, and so forth. It also contains static storage for
some Icon strings and blocks that appear in C functions. For example, runtime/data.r contains
statically-allocated blocks for many runtime system entities such as built-in csets. Such blocks
never move, but in some cases their contents may change. In Unicon, most non-constant data that
was global in Icon has been moved into a per-program or per-thread structure. The size of the
run-time system is machine-dependent.

The Icode Region. One of the first things done by the run-time system is to read in the icode
file for the program that is to be executed. The data in the icode region, which is produced by the
linker, is divided into a number of sections:

code and blocks

record information

global identifier values

global identifier names

static identifier values

strings

The first section contains virtual machine code, blocks for cset and real literals, and procedure
blocks, on a per-procedure basis. Thus, the section of the icode region that contains code and blocks
consists of segments of the following form for each procedure:
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blocks for real literals

blocks for cset literals

procedure blocks

virtual machine instructions

Record information for the entire program is in the second section of the icode region. Next,
there is an array of descriptors for the values of the global identifiers in the program, followed
by an array that contains qualifiers for the names of the global identifiers. These two arrays are
parallel. The ith descriptor in the first array contains the value of the ith global identifier, and the
ith descriptor in the second array contains a qualifier for its name.

Following the two arrays related to global identifiers is an array for the values of static identi-
fiers. As mentioned in Sec. 2.1.10, static identifiers have global scope with respect to procedure
invocation, but a static identifier is accessible only to the procedure in which it is declared.

Unlike cset and real blocks, which are compiled on a per-procedure basis, all strings in a pro-
gram are pooled and are in a single section of the icode region that follows the array of static
identifiers. A literal string that occurs more than once in a program occurs only once in the string
section of the icode region.

Data in the icode region is never moved, although some components of it may change at run
time. The size of the icode region depends primarily on the size of the corresponding source
program. As a rule of thumb, an icode region is approximately 2-4x as large as the corresponding
Icon source-language file.

Allocated Storage. The space for data objects that are constructed at run time is provided in
allocated storage regions. Historically this portion of memory consisted of three parts: a static
region, a string region, and a block region.

The static region was originally just for co-expression blocks. Once expandable regions via
sbrk() were retired, the management of static region(s) was returned to the C library, using standard
functions such as malloc() and free().

The remaining allocated storage regions are divided into strings and blocks as shown. The string
region contains only characters. The block region, on the other hand, contains pointers. This leads
to a number of differences in allocation and garbage-collection techniques in different regions.

The initial sizes of the allocated storage regions vary considerably from computer to computer,
depending on the size of the user address space. In Icon, initial sizes of 500,000 bytes or 2,000,000
bytes per region are common. Unicon allocates a percentage of available memory for each string
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and block region. The user may establish different initial sizes prior to program execution by using
environment variables STRSIZE and BLKSIZE. As indicated previously, new larger regions are
allocated at run time if necessary, but there is no provision for decreasing the size of a region once
it has been allocated a given size.

If a string or block region cannot satisfy a storage request after it has been garbage collected, a
new region is allocated and the old region placed in a pool of available regions. Subsequently, as
part of the processing to allocate new storage, if the current region cannot satisfy the request the
pool is searched to see if there is an existing region that can satisfy the request. Only if no region
can satisfy the request is a new region allocated (and the old region assigned to the pool).

In concurrent Unicon programs, each thread allocates from its own string and block regions.
Free Space and the Stacks. It was originally intended that the “free space” depicted in the

diagram at the top of this section would be managed by the Icon runtime system, cleverly sharing
this memory between the allocated storage (heaps) and system stack as needed. Some programs
might use more structures, while others might employ algorithms that were stack-heavy.

In fact, the implementation of Icon was never this simple. The system stack grew downwards on
some systems and upwards on others, and there was also an interpreter stack. After the introduction
of multiple regions, the notion of “free space” was given up (or assumed to be managed by the C
library and/or operating system) and Icon and Unicon more or less came to accept a massively
fragmented memory model. New heaps can be allocated as needed, but all stacks (except the
system stack, also called the C stack) had better be big enough up front.

System stacks may be limited in size by the operating system, although on some systems the
program can request increases and on other systems the size is very large. Besides the possibility
of a heavily recursive Icon or Unicon algorithm needing a very large stack, the implementor must
also recognize that the garbage collection algorithm is recursive, and given large enough structures,
it will trigger stack overflows and machine crashes.

12.2 Allocation

Storage allocation in Icon is designed to be fast and simple. Garbage collection is somewhat more
complicated as a result. Part of the rationale for this approach is that most Icon programs do a con-
siderable amount of allocation, but many programs never do a garbage collection. Hence, programs
that do not garbage collect are not penalized by a strategy that makes garbage collection more ef-
ficient at the expense of making allocation less efficient. The other rationale for this approach is
that the storage requirements of Icon do not readily lend themselves to more complex allocation
strategies.
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12.2.1 The Static Region

The “static region” is now a logical rather than physical designation, denoting potentially many
discontiguous blocks of memory. The term refers generically to data that not managed or moved
by the garbage collector. This memory is managed by the C library using its usual semantics.

For example, co-expression blocks are allocated in the static region. Their C stacks contain
internal pointers that depend on both the computer and the C compiler and hence are difficult to
relocate to another place in memory. The C library routines malloc() and free() are used to allocate
and free co-expression blocks. These routines maintain a list of blocks of free space. The routine
malloc() finds a block of the requested size, dividing a larger block if necessary, and revises the free
list accordingly. The routine free() returns the freed space to the free list, coalescing it with adjacent
free blocks if possible. See Kernighan and Ritchie 1978 for a discussion of free-list allocation.

12.2.2 Blocks

For other kinds of blocks, Icon takes advantage of the fact that its own data can be relocated if
necessary and uses a very simple allocation technique. The allocated region for blocks is divided
into two parts:

allocated blocks

free block space

blkfree

blkend

blkbase

-

-

-

When there is a request for a block of n bytes, the free pointer, blkfree, is incremented by n and
the previous value of the free pointer is returned as the location of the newly allocated block. This
process is fast and free of the complexities of the free-list approach.

Note that this technique really amounts to a free list with only one block. The problem of
reclaiming fragmented space on the free list is exchanged for the process of reclaiming unused
blocks and rearranging the block region so that all the free space is in one contiguous portion of the
block region. This is done during garbage collection.

12.2.3 Strings

There is even less justification for a free-list approach for allocating strings. A newly created string
may be one character long or it may be thousands of characters long. Furthermore, while there is
space in blocks that can be used to link together free storage, there is no such space in strings, and
a free list would involve additional storage.
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Instead, the string region is allocated in the same way that the block region is allocated:

allocated strings

free string space

strfree

strend

strbase

-

-

-

As with the block region, a garbage collection is performed if there is not enough space in the
string region to satisfy an allocation request.

12.3 Garbage Collection

Allocation is simple, but garbage collection is not. The primary purpose of garbage collection
is to reclaim the space occupied by “dead” objects that are not needed for subsequent program
execution, so that this space can be reallocated. This means different things in different regions.
In the static region, it means freeing dead co-expression blocks. In the string and block regions,
it involves moving the space for dead objects from the allocated portion of the region to the free
portion. This is considerably more complicated than adding a pointer to a free list. Since all free
space must be in a single block in these regions, “live” objects must be moved to fill in the holes
left by dead ones. This is done by compacting the allocated portion of these regions, relocating
live objects toward the beginning of these regions and squeezing out dead objects. In turn, pointers
to live objects have to be adjusted to correspond to their new locations. There are two phases in
garbage collection (four in Unicon):

• Suspension of all threads except the thread that wishes to perform a garbage collection.

• Location of live objects and all the pointers to them.

• Compaction of live objects and adjustment of the pointers to them.

• Re-enabling of suspended threads. This may cause further garbage collections if a suspended
thread’s regions are “nearly full” — see chapter 30 in Part 3 for details.

“Garbage collection” is somewhat of a misnomer, since the process is oriented toward saving
“non-garbage” objects; garbage disappears as a byproduct of this operation.
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12.3.1 The Basis

The challenging problem for garbage collection is the location of objects that have to be saved,
as well as all pointers to them. An object is dead, by definition, if it cannot be accessed by any
future source-language computation. Conversely, by definition, an object is live if it can be ac-
cessed. Consequently, the important issue is the possibility of computational access. For example,
it is always possible to access the value of &subject, and this value must be preserved by garbage
collection. On the other hand, in

a := [1,2,3]
a := list(10)

after the execution of the second assignment, the first list assigned to a is inaccessible and can be
collected.

It is essential to save any object that may be accessed, but there is no way, in general, to know
if a specific object will be accessed. For example, a computational path may depend on factors that
are external to the program, such as the value of data that is read from a file. It does comparatively
little harm to save an object that might be accessed but, in fact, never is. Some storage is wasted,
but it is likely to be reclaimed during a subsequent collection. It is a serious error, on the other
hand, to discard an object that subsequently is accessed. In the first place, the former value of such
an object usually is overwritten and hence is “garbage” if it is subsequently accessed. Furthermore,
accessing such an object may overwrite another accessible object that now occupies the space
for the former one. The effects may range from incorrect computational results to addressing
violations. The sources of such errors also are hard to locate, since they may not be manifested
until considerably later during execution and in a context that is unrelated to the real cause of the
problem. Consequently, it is important to be conservative and to err, if at all, on the side of saving
objects whose subsequent accessibility is questionable. Note that it is not only necessary to locate
all accessible objects, but it is also necessary to locate all pointers to objects that may be relocated.

The location phase starts with a basis that consists of descriptors that point to objects that may
be accessible and from which other objects may be accessed. For example, &subject is in the basis.
The precise content of the basis is partly a consequence of properties of the Icon language and
partly a consequence of the way the run-time system is implemented. The basis consists of the
following descriptors:

• &main (co-expression block for the initial call of main)

• current co-expression block

• values of global identifiers

• values of static identifiers
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• &subject

• saved values of map arguments

• tended descriptors

• file and list values for graphics windows

• (Unicon) per-thread values of keywords and the co-expression block associated with each
thread (see Chapter 30 in Part 3)

The tended descriptors provide temporary storage for a run-time support routine in which a
garbage collection may occur. See Sec. 12.2.2.

Not all objects that have to be saved are pointed to directly by the basis. The value of a local
identifier on the interpreter stack may point to a list-header block that in turn points to a list-
element block that contains elements pointing to strings and other blocks. Pointer chains also can
be circular.

12.3.2 The Location Phase

For historical reasons, the location phase is sometimes called marking. This term refers to the com-
mon practice of setting an identifying bit in objects that have been located. Not all such processes
actually change the objects that are located. The way that this is done in Icon depends on the region
in which an object is located.

During the location phase, every descriptor in the basis is examined. A descriptor is of interest
only if it is a qualifier or if its v-word contains a pointer (that is, if its d-word contains a p flag). For
a pointer dp to a descriptor, the following checks are performed:

if (Qual(*dp))
postqual(dp);

else if (Pointer(*dp))
markblock(dp);

where the macro Pointer(d) tests the d-word of d for a p flag.
Strings. The routine postqual() first checks that the v-word of the qualifier points to a string in

the allocated string region, since strings in other parts of memory are not of interest during garbage
collection. If the string is in the allocated string region, a pointer to the qualifier is placed in an
array:
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void postqual(dptr dp)
{

...
if (InRange(strbase,StrLoc(*dp),strfree+1)) {

*qualfree++ = dp;
}

}

The array quallist is empty when garbage collection begins. Its size is checked before a pointer
is added to it, and more space is obtained if it is needed although the code for doing that is not
shown here. See Sec. 11.3.6.

The pointers that accumulate in quallist during the marking phase provide the information nec-
essary to determine the portion of the allocated string region that is in use. In addition, these
pointers point to all the qualifiers whose v-word must be adjusted when the strings they point to are
moved during the compaction of string region. See Sec. 11.3.3.

Blocks. The location phase for blocks is more complicated than that for strings, since blocks
may contain block pointers to other blocks as well as descriptors that either point to strings or point
to other blocks. The objects that these pointers and descriptors point to must be processed also.

Unlike strings, in which a separate array is used to keep track of qualifier that have been located,
no extra space is needed to keep track of descriptors that point to blocks. Instead, block pointers,
descriptors and the titles of the blocks they point to are modified temporarily.

The title of any block located in the allocated block region is changed to point to a back chain
that contains all the descriptors and block pointers that point to that block. The descriptors are
linked through their v-words.

The following example illustrates the process. Suppose there is a record declaration

record term(value, code, count)

and that the following expressions are evaluated:

x := term("chair", "noun",4)
y := x

The values of x, y, and the block they point to are related as follows:
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record
40
id

- record-constructor

5
- "chair"

4
- "noun"

integern

4

recordnpy

6

x recordnp
-

Suppose that the descriptor containing the value of x is processed during the location phase
before the descriptor containing the value of y. This descriptor is identified as pointing to a block
in the allocated block region by virtue of the p flag in its d-word and an address range check on
the value of its v-word. The back chain is established by setting the title word of the block to point
to the descriptor and setting the v-word of the descriptor to hold the previous contents of the title
word. The result is

40
id

- record-constructor

5
- "chair"

4
- "noun"

integern

4

recordnpy

x recordnp

record -

-

The title word of the block now points to the descriptor that previously pointed to the block.
This change is reversible, and prior to the completion of the garbage collection process the previous
relationship is restored. A crucial but somewhat subtle aspect of the change is that it is now possible
to tell that the block has been marked. The numerical magnitude of the value of its title word is
greater than that of any type code, since all descriptors in the run-time system are at memory
locations whose addresses are larger than the largest type code.

The descriptors in the record block now are processed in the same way as descriptors in the
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basis. In order to do this, it is necessary to know where descriptors are located in the block. Since
blocks in the allocated block region are organized so that all descriptors follow all non-descriptor
data, it is only necessary to know where the first descriptor is and how large the block is. These
values are determined using two arrays that have entries for each type code.

The first array, bsizes, provides the information that is needed to determine block sizes. There
are three kinds of entries. An entry of -1 indicates a type for which there is no block or for which
the blocks are not in the allocated block region. Examples are T_Null and T_Coexpr. An entry of
0 indicates that the size of the block follows the block title. This is the case for records. Any other
entry is the actual size of the block in bytes. For example, the entry in bsizes for T_List is 24 on a
32-bit computer.

The second array, firstd, is used to determine the byte offset of the first descriptor in the block.
As with bsizes, a value of -1 indicates a type for which there are no associated blocks in the
allocated block region. A value of 0 indicates that there are no descriptors in the block. Examples
are T_Cset and T_Real. For T_Record, the entry is 8 for 32-bit computers, indicating that the first
descriptor is at an offset of 8 bytes (2 words) from the beginning of the block. See Sec. 4.2.

Extra information is required to handle blocks that contain block pointers. It is necessary to
know the location of pointers within the block. Two further arrays contain this information. The
first array, firstp, contains the offset in bytes from the start of the block to the first block pointer.
There are three kinds of entry. An entry of -1 indicates a type for which there are no allocated
blocks. A value of 0 means that there are no block pointers. Any other value is the offset in bytes
of the first block pointer. The second array, ptrno contains the number of block pointers in the
block. As with firstp, an entry of -1 denotes a type for which there are no allocated blocks. 0 means
that the rest of the block contains block pointers and a positive value indicates that there are exactly
that many block pointers.

The constraint that this design places on the implementation is that all the block pointers must
be contiguous within a block and (since the descriptors must be at the end) before any descriptors.
Any block that may have a variable number of block pointers must have no descriptors and the
pointers must be located at the end of the block.

There is only one block pointer in a record, which points to the record constructor (of type
proc). The result after processing the record block is that the record constructor block’s back chain
points to the block pointer in the record block (the record constructor block structure is not shown
in detail).
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40
id

proc
.
.
.

record-constructor
�

5
- "chair"

4
- "noun"

integern

4

recordnpy

x recordnp

record -

-

For the previous example, after the block pointers and descriptors in the record block are pro-
cessed, the location phase continues. When the descriptor that contains the value of y is processed,
it is added to the back chain by again exchanging the contents of its v-word with the contents of the
title of the block. As a result, the title of the block points to the descriptor for the value of y and its
v-word points to the descriptor for the value of x:

40
id

proc
.
.
.

record-constructor
�

5
- "chair"

4
- "noun"

integern

4

recordnpy

x recordnp

record

��-

-

Since the title of the block that y points to is marked, the descriptors in it are not processed.
This prevents descriptors from being processed twice and also prevents the marking phase from
looping in case there are pointer loops among blocks.

If a variable descriptor is encountered when processing descriptors whose d-words contain p
flags, the value the variable points to belongs to one of the following categories:
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• trapped-variable block

• global or static identifier

• argument or local identifier

A trapped variable, indicated by a t flag in its v-word, points to a block and is processed like
any other descriptor that points to a block. The values of global and static identifiers are in the basis
and are processed separately. The values of arguments and local identifiers are on an interpreter
stack and are processed when its co-expression block is processed.

Continuing the previous example, suppose that a garbage collection is triggered by evaluation
of the expression

x.count := read()

At the beginning of garbage collection, there is a variable descriptor for the field reference that
points to the record block in addition to the descriptors for the values of x and y. If the values of
x and y are processed first as described previously, the situation when the variable descriptor is
encountered is

40
id

proc
.
.
.

record-constructor
�

5
- "chair"

4
- "noun"

integern

4

recordnpy

x recordnp

record

8npv
-

-

-

��-

-

Note that the offset in the d-word of the variable descriptor is in words, not bytes.
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40
id

proc
.
.
.

record-constructor
�

5
- "chair"

4
- "noun"

integern

4

recordnpy

x recordnp

record

8npv

��

-

-

-

When the location phase is complete, the title of each block in the allocated block region that
must be saved points to a chain of all the descriptors that originally pointed to it. This provides the
necessary information to adjust the v-words of these descriptors to account for the relocation of the
block during the compaction phase. See Sec. 11.3.3.

If a descriptor that points to a co-expression block is encountered during the location phase,
the title of the co-expression block is marked and the descriptors in the co-expression block are
processed in a fashion similar to that for blocks in the allocated block region. Since co-expression
blocks are never moved, it is not necessary to keep track of descriptors that point to them. To mark
the title, it is sufficient to change it to a value that is larger than any type code.

The activator of the co-expression (if any) is processed like any other co-expression block.
Similarly, the refresh block that is pointed to from the co-expression block must be processed like
any other block. The rest of the descriptors associated with a co-expression are in its interpreter
stack.

Here the situation is more complicated than it is with blocks in the allocated block region, since
interpreter stacks contain frame markers in addition to descriptors. Despite this, all the descriptors,
and only the descriptors, on an interpreter stack must be processed.

Interpreter stacks are processed by the routine sweep(), which starts at sp for the stack and
works toward the stack base. Descriptors are processed until the next frame marker is encountered,
at which point, depending on the type of the frame, the marker is skipped and new frame pointers
are set up from it.

The routine for marking blocks is

static void markblock(dp)
dptr dp;

{
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register dptr dp1;
register char *block, *endblock;
word type, fdesc;
int numptr;
register union block **ptr, **lastptr;

if (Var(*dp)) {
if (dp->dword & F_Typecode) {

switch (Type(*dp)) {
case T_Kywdint:
case T_Kywdpos:
case T_Kywdsubj:

/*
* descriptor points to a keyword, not a block.
*/

return;
}

}
else if (Offset(*dp) == 0) {

/*
* A simple variable not residing in a block.
*/
return;
}

}

/*
* Get the block to which dp points.
*/
block = (char *)BlkLoc(*dp);

if (InRange(blkbase,block,blkfree)) {
type = BlkType(block);
if ((uword)type <= MaxType) {

/*
* The type is valid, which indicates that this block
* has not been marked. Point endblock to the byte
* past the end of the block.
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*/
endblock = block + BlkSize(block);
}

/*
* Add dp to the back chain for the block and point the
* block (via the type field) to dp.vword.
*/

BlkLoc(*dp) = (union block *)type;
BlkType(block) = (uword)&BlkLoc(*dp);

if ((uword)type <= MaxType) {
/*
* The block was not marked; process pointers and
* descriptors within the block.
*/
if ((fdesc = firstp[type]) > 0) {

/*
* The block contains pointers; mark each pointer.
*/
ptr = (union block **)(block + fdesc);
numptr = ptrno[type];
if (numptr > 0)

lastptr = ptr + numptr;
else

lastptr = (union block **)endblock;
for (; ptr < lastptr; ptr++)

if (*ptr != NULL)
markptr(ptr);

}
if ((fdesc = firstd[type]) > 0)

/*
* The block contains descriptors; mark each one.*/
for (dp1 = (dptr)(block + fdesc);

(char *)dp1 < endblock; dp1++) {
if (Qual(*dp1))

postqual(dp1);
else if (Pointer(*dp1))

markblock(dp1);
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}
}

}

else if ((unsigned int)BlkType(block) == T_Coexpr) {
struct b_coexpr *cp;
struct astkblk *abp;
int i;
struct descrip adesc;

/*
* dp points to a co-expression block that has not been
* marked. Point the block to dp. Sweep the interpreter
* stack in the block. Then mark the block for the
* activating co-expression and the refresh block.
*/
BlkType(block) = (uword)dp;
sweep((struct b_coexpr *)block);

/*
* Mark the activators of this co-expression. The
* activators are stored as a list of addresses, but
* markblock requires the address of a descriptor. To
* accommodate markblock, the dummy descriptor adesc is
* filled in with each activator address in turn and then
* marked. Since co-expressions and the descriptors that
* reference them don’t participate in the back-chaining
* scheme, it’s ok to reuse the descriptor in this manner.
*/
cp = (struct b_coexpr *)block;
adesc.dword = D_Coexpr;
for (abp = cp->es_actstk; abp!=NULL; abp = abp->astk_nxt) {

for (i = 1; i <= abp->nactivators; i++) {
BlkLoc(adesc) =

(union block *)abp->arec[i-1].activator;
markblock(&adesc);
}

}
if(BlkLoc(cp->freshblk) != NULL)
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markblock(&((struct b_coexpr *)block)->freshblk);
}

else {
/* . . . code for blocks found in other regions */
}

}

The macro BlkType(cp) produces the type code of the block pointed to by cp. The macro
BlkSize(cp) uses the array bsizes to determine the size of the block pointed to by cp.

12.3.3 Pointer Adjustment and Compaction

Strings. When the location phase is complete, quallist contains a list pointers to all the qualifiers
whose v-words point to the allocated string region. For example, suppose that the allocated string
region at the beginning of a garbage collection is

. . . Necessity is the mother of strange bedfellows . . .

strbase
6 6

+400
6

strfree

Suppose also that the following qualifiers reference the allocated string region:

12
- " of strange " (strbase+415)

q1

1
- "f" (strbase+430)

q2

2
- "y " (strbase+400)

q3

3
- "y i" (strbase+400)

q4

3
- "fel" (strbase+430)

q5

4
- "tran" (strbase+420)

q6

10
- "y is the m" (strbase+400)

q7

The pointers to the allocated string region are
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. . . Necessity is the mother of strange bedfellows . . .

strbase +400 +415 +420 +430
6 6 6 6 6 6

strfree

Note that the qualifiers point to overlapping strings.
After the location phase, quallist might contain the following pointers:

-

-

-

-

-

-

-

q2
q7
q1
q6
q4
q5
q3

The order of the pointers in quallist depends on the order in which the qualifiers are processed:
there is no necessary relationship between the order of the pointers in quallist and the order of the
pointers to the allocated string region.

At the beginning of the pointer-adjustment phase of garbage collection, the array quallist is
sorted in non-decreasing order by the v-words in qualifiers that are pointed to from quallist. This
allows the pointers to the allocated string region to be processed in non-decreasing order so that the
portions of the allocated string region that must be saved and compacted can be determined.

Continuing the previous example, quallist becomes

-

-

-

-

-

-

-

q2
q5
q6
q1
q7
q4
q3

The v-words of the qualifiers in the order of the pointers in quallist now are

strbase+400
strbase+400
strbase+400
strbase+415
strbase+420
strbase+430
strbase+430
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Since qualifiers may reference overlapping strings, care must be taken to identify contiguous
“clumps” of characters that may be shared by qualifiers. The pointers in quallist are processed in
order. Three pointers in the string region are maintained: dest, the next free destination for a clump
of characters to be saved; source, the start of the next clump; and cend, the end character in the
current clump.

When a qualifier that is pointed to from quallist is processed, the first question is whether its v-
word addresses a character that is beyond the end of the current clump (since v-words are processed
in numerical order, the address is either in the current clump or beyond the end of it). If it is in the
current clump, cend is updated, provided the last character of the current qualifier is beyond cend.
If it is not in the current clump, the clump is moved from source to dest. In either case, the v-word
of the current qualifier is adjusted (dest -source is added to it).

In the previous example, the allocated string region after collection is

y is the m of strange fel

strbase
6 6

strfree

and the seven qualifiers that point to it are

12
- " of strange " (strbase+10)

q1

1
- "f" (strbase+22)

q2

2
- "y " (strbase)

q3

3
- "y i" (strbase)

q4

3
- "fel" (strbase+22)

q5

4
- "tran" (strbase+15)

q6

10
- "y is the m" (strbase)

q7

The routine for compacting the allocated string region and adjusting pointers to it is
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static void scollect(extra)
word extra;

{
register char *source, *dest;
register dptr *qptr;
char *cend;
CURTSTATE();

if (qualfree <= quallist) {
/*
* There are no accessible strings. Thus, there are none to
* collect and the whole string space is free.
*/
strfree = strbase;
return;
}

/*
* Sort the pointers on quallist in ascending order of string
* locations.
*/
qsort((char *)quallist, (int)(DiffPtrs((char *)qualfree,(char *)quallist)) /

sizeof(dptr *), sizeof(dptr), (QSortFncCast)qlcmp);
/*
* The string qualifiers are now ordered by starting location.
*/
dest = strbase;
source = cend = StrLoc(**quallist);

/*
* Loop through qualifiers for accessible strings.
*/
for (qptr = quallist; qptr < qualfree; qptr++) {

if (StrLoc(**qptr) > cend) {

/*
* qptr points to a qualifier for a string in the next clump.
* The last clump is moved, and source and cend are set for
* the next clump.
*/
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while (source < cend)
*dest++ = *source++;

source = cend = StrLoc(**qptr);
}

if ((StrLoc(**qptr) + StrLen(**qptr)) > cend)
/*
* qptr is a qualifier for a string in this clump; extend
* the clump.
*/
cend = StrLoc(**qptr) + StrLen(**qptr);

/*
* Relocate the string qualifier.
*/

StrLoc(**qptr) = StrLoc(**qptr) + DiffPtrs(dest,source) + (uword)extra;
}

/*
* Move the last clump.
*/

while (source < cend)
*dest++ = *source++;

strfree = dest;
}

The argument extra provides an offset in case the string region is moved. See Sec. 11.3.5.
Sorting is done by the C library routine qsort, whose fourth argument is a routine that performs

the comparison

static int qlcmp(dptr *q1, dptr *q2)
{

return (int)(DiffPtrs(StrLoc(**q1),Strloc(**q2)));
}

Blocks. After the location phase, some blocks in the allocated block region are marked and
others are not. In the following typical situation, the horizontal lines delimit blocks, gray areas
indicate marked blocks, and clear areas indicate unmarked blocks:
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-blkbase

-blkfree

...

-blkend
In the allocated block region, pointer adjustment and compaction are done in two linear passes

over the region between blkbase and blkfree. In the first pass, two pointers are used, dest and
source. dest points to where the next block will be after blocks are moved in the next pass, while
source points to the next block to be processed. Both dest and source start at blkbase, pointing to
the first allocated block.

During this pass, the title of each block pointed to by source is examined. If it is not marked
(that is, if it is not larger than the maximum type code), dest is left unchanged and source is
incremented by the size of the block to get to the title of the next block. Thus, unmarked blocks are
skipped. The array bsizes is used, as before, to determine block sizes.

If the title of the block pointed to by source is marked, its back chain of descriptors is processed,
changing their v-words to point to where dest points. Version 6 of Icon (where some variable
descriptors pointed to within blocks) needed to treat such descriptors specially to account for the
extra offset. A previous edition of this book said

“A variable descriptor that points to a descriptor in a structure points within a block,
not to the title of a block. This is the only case in which the offset, which is contained
in the least-significant portion of the d-word of a non-trapped-variable descriptor, is
nonzero. Consequently, this offset is used to distinguish such variables.”

...

“In the case of a variable descriptor that is not a trapped-variable descriptor, the offset
in its d-word is added to its v-word, so that it points to the appropriate relative position
with respect to dest.”

Unfortunately in version 8 of Icon, which substituted block-pointers for the descriptors in blocks
that pointed to other blocks (and hence introduced block-pointers into the back chain), it is no
longer possible to identify offset descriptors because the value of the word immediately before the
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pointer in the chain can no longer be guaranteed to be the d-word of a descriptor. As a conse-
quence, all descriptors now point to the start of the block, so the previous special case is no longer
neccessary. The previous treatment of offset descriptors was an optimization for speed of access
during normal execution. With the introduction of block-pointers, which make all blocks smaller,
we have effectively traded a reduction in space for all programs for a slightly increased execution
time in some cases.

The last descriptor in the back chain is identified by the fact that its v-word contains a type code
(a value smaller than any possible pointer to the allocated block region). This type code is restored
to the title of the block before the v-word is changed to point to the destination. An m flag is set
in the title to distinguish it as a marked block, since the former marking method no longer applies,
but the compaction phase needs to determine which blocks are to be moved.

After the back chain has been processed, all descriptors that point to the block now point to
where the block will be when it is moved during the compaction phase. The block itself is not
moved at this time. This is illustrated by the example given previously, in which three descriptors
point to a record block. After marking, the situation is

40
id

proc
.
.
.

record-constructor
�

5
- "chair"

4
- "noun"

integern

4

recordnpy

x recordnp

record

8npv

��

-

-

-

After processing the back chain, the situation is
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recordm

40
id

proc
.
.
.

record-constructor
�

5
- "chair"

4
- "noun"

integern

4

recordnp
- dest

recordnp
- dest

8npv
- dest

Note that the v-words of the descriptors point to where the block will be after it is moved. When
the record constructor block is encountered and processed (assuming the value of dest at that time
is dest_rc), the situation becomes

recordm

40
id

- dest_rc

5
- "chair"

4
- "noun"

integern

4

proc
.
.
.

record-constructor

recordnp
- dest

recordnp
- dest

8npv
- dest

The routine for adjusting pointers to the allocated block region is

static void adjust(char *source, char *dest)
{
register union block **nxtptr, **tptr;

/*
* Loop through to the end of allocated block region, moving
* source to each block in turn and using the size of a block
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* to find the next block.
*/

while (source < blkfree) {
if ((uword)(nxtptr = (union block **)BlkType(source)) >

MaxType) {

/*
* The type field of source is a back pointer. Traverse
* the chain of back pointers, changing each block
* location from source to dest.
*/
while ((uword)nxtptr > MaxType) {

tptr = nxtptr;
nxtptr = (union block **) *nxtptr;
*tptr = (union block *)dest;
}

BlkType(source) = (uword)nxtptr | F_Mark;
dest += BlkSize(source);
}

source += BlkSize(source);
}

}

When the pointer-adjustment phase is complete, the blocks can be moved. At this time, all the
block titles contain type codes, and those that are to be saved are marked by m flags. During the
compaction phase, these pointers are used again to reference the destination and source of blocks
to be moved.

If an unmarked block is encountered, source is incremented by the block skipping over the
block. If a marked block is encountered, the m flag in its is removed and the block is copied to
dest. Then dest and source are incremented by the size of the block.

When blkfree is reached, it is set to dest. At this point the allocated block region has been
compacted. All saved blocks are before blkfree, and all free space is after it. The pointers that were
adjusted now point to their blocks, and the relative situation is the same as it was before garbage
collection.

The routine for compacting the allocated block region is

static void compact(source)
char *source;
{
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register char *dest;
register word size;

/*
* Start dest at source.
*/
dest = source;

/*
* Loop through to end of allocated block space, moving source
* to each block in turn, using the size of a block to find
* the next block. If a block has been marked, it is copied
* to the location pointed to by dest and dest is pointed
* past the end of the block, which is the location to place
* the next saved block. Marks are removed from the saved
* blocks.
*/
while (source < blkfree) {

size = BlkSize(source);
if (BlkType(source) & F_Mark) {

BlkType(source) &= ˜F_Mark;
if (source != dest)

mvc((uword)size,source,dest);
dest += size;
}

source += size;
}

/*
* dest is the location of the next free block. Now that
* compaction is complete, point blkfree to that location.
*/
blkfree = dest;

}

The routine mvc(n, source, dest) moves n bytes from source to dest.
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12.3.4 Collecting Co-Expression Blocks

After the location phase of garbage collection is complete, all the live co-expression blocks are
marked, but the dead co-expression blocks are not. It is a simple matter to process the list of co-
expression blocks, which are linked by pointers, calling free to deallocate dead ones and at the same
time removing them from the list. For live co-expressions, the type code in the title is restored. The
routine cofree that frees co-expression blocks is

static void cofree()
{

register struct b_coexpr **ep, *xep;

/*
* Reset the type for &main.
*/

BlkLoc(k_main)->coexpr.titie = T_Coexpr;
/*
* The co-expression blocks are linked together through their
* nextstk fields, with stklist pointing to the head of the
* list. The list is traversed and each stack that was not
* marked is freed.
*/

ep = &stklist;
while (*ep != NULL) {

if (BlkType(*ep) == T_Coexpr) {
xep = *ep;
*ep = (*ep)->nextstk;
/*
* Free the astkblks. There should always be one and it
* seems that it’s not possible to have more than one,
* but nonetheless, the code provides for more than one
*/
for (abp = xep->es_actstk; abp; ) {

xabp = abp;
abp = abp->astk_nxt;
free((pointer)xabp);
}

coclean(xep->cstate);
free((char *)xep);
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}
else {

BlkType(*ep) = T_Coexpr;
ep = &(*ep)->nextstk;
}

}
}

12.3.5 Multiple Regions

Garbage collection may not produce enough free space in a region to satisfy the request that caused
the garbage collection. In this case, the region for which the request was made is replaced with a
new larger region. In addition, the allocated string and block regions are replaced if the amount of
free space in them after garbage collection otherwise would be less than a minimum value, which
is called “breathing room.” This attempts to avoid “thrashing” that might result from a garbage
collection that leaves a small amount of free space, only to result in a subsequent garbage collection
almost immediately.

The set of string and block regions for a program are managed as a linked list. Older, “tenured”
regions are revisited, and garbage collected, prior to allocating new, larger regions. If an older
region frees enough space, it is made the active region instead of allocating a new one.

Unicon takes advantage of multiple regions to implement the storage allocations made by
threads efficiently. Each thread has its own string and block region from which it makes allo-
cations. This design avoids delays caused by mutual exclusion, which would be necessary if the
threads shared a common string or block region.

Note that the use of a dedicated per-thread region does not mean that a thread may perform
a garbage collection whilst other threads are running. Although it is likely that most of the data
in a thread’s dedicated region has been allocated by the thread itself, because the regions can be
swapped between threads (by a region becoming full, then being garbage collected and assigned to
another thread) there is no guarantee that all of the allocations in a thread’s dedicated region have
been made by that thread. Furthermore, threads may pass references to each other’s data structures
which makes it necessary to suspend all threads to sweep across all regions and update any shared
references.

A thread that requires a garbage collection must first suspend all the other threads before pro-
ceeding, which it does by signalling to the runtime system that a collection is required: Each thread
checks whether a garbage collection request has been made after every instruction. If so it suspends
itself.

Chapter 33 in Part 3 has more details of storage layout for multi-threaded programs and how
garbage collection is coordinated when several threads are active.
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12.3.6 Storage Requirements during Garbage Collection

Garbage collection itself takes some work space. Space for pointers to qualifiers is provided in
quallist, while C stack space is needed for calls to routine that perform the various aspects of
garbage collection, which are heavily recursive.

The space for quallist is obtained from the free space at the end of the allocated block region.
The amount of space needed is proportional to the number of qualifiers whose v-words point to
strings in the allocated string region and usually is comparatively small. Space for quallist is ob-
tained in small increments

This is done in postqual(), for which the complete routine is

static void postqual(dptr dp)
{
char *newqual;

if (InRange(strbase,StrLoc(*dp),strfree + 1)) {
/*
* The string is in the string space. Add it to the string
* qualifier list, but before adding it, expand the string
* qualifier list if necessary.
*/

if (qualfree >= equallist) {
/* reallocate a qualifier list that’s twice as large */
newqual = realloc(quallist, 2 * qualsize);
if (newqual) {

quallist = (dptr *)newqual;
qualfree = (dptr *)(newqual + qualsize);
qualsize *= 2;
equallist = (dptr *)(newqual + qualsize);
}

else {
qualfail = 1;
return;
}

}
*qualfree++ = dp;
}

}

The amount of stack space required during garbage collection depends primarily on the depth
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of recursion in calls to markblock() and markptr(). Recursion in these functions corresponds to
linked lists of pointers in allocated storage. It occurs where a descriptor in the static region or the
allocated block region points to an as-yet unmarked block. C stack overflow may occur during
garbage collection. This problem is particularly serious on computers with small address spaces
for programs that use a large amount of allocated data. The use of stack space during marking
is minimized by testing descriptor v-words before calling markblock(), by using static storage for
variables in markblock() that are not needed in recursive calls, and by incorporating the code for
processing co-expression blocks in markblock(), rather than calling a separate routine.

12.4 Predictive Need

In most systems that manage allocated storage dynamically, garbage collections are triggered by
allocation requests that cannot be satisfied by the amount of free storage that remains. In these
systems, garbage collections occur during calls to allocation routines.

Whenever a garbage collection occurs, all potentially accessible data must be reachable from
the basis, and any descriptors that are reachable from the basis must contain valid data. These
requirements pose serious difficulties, since, in the normal course of computation, pointers to ac-
cessible objects may only exist in registers or on the C stack as C local variables that the garbage
collector has no way of locating. Furthermore, descriptors that are being constructed may tem-
porarily hold invalid data. While it is helpful to know that garbage collection can occur only during
calls to allocation routines, allocation often is done in the midst of other computations. Assuring
that all accessible data is reachable and that all reachable data is valid can be difficult and prone to
error.

For these reasons, Icon uses a slightly different strategy, called “predictive need,” for triggering
garbage collections. Instead of garbage collection occurring as a byproduct of an allocation request,
the amount of space needed is requested in advance. There is a routine, reserve(Region,n), for
reserving space in advance. This routine checks the specified region to assure the amount of free
space needed is actually available. If it is not, it calls the garbage collector. The code for reserve()
is conceptually

char *reserve(int r, uword n)
{

if (DiffPtrs(regions[r]->end,regions[r]->free < n))
collect(r,n);

return regions[r]->free;
}

In practice, things are more complicated, as the current region may be changed or a new region
may be allocated in order to satisfy the request.

The string allocator mainly ensures space is available and then updates the free pointer:
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char *alcstr(char *s, word slen)
{
tended struct descrip ts;
register char *d;
char *ofree;

/*
* Make sure there is enough room in the string space.
*/

if (DiffPtrs(strend,strfree) < slen) {
StrLen(ts) = slen;
StrLoc(ts) = s;
if (!reserve(Strings, slen))

return NULL;
s = StrLoc(ts);
}

strtotal += slen;
/*
* Copy the string into the string space, saving a pointer to
* its beginning. Note that s may be null, in which case the
* space is still to be allocated but nothing is to be copied
* into it.
*/

ofree = d = strfree;
if (s) {

while (slen-- > 0)
*d++ = *s++;
}

else
d += slen;

strfree = d;
return ofree;
}

If a garbage collection occurs, a parameter is passed to be sure that enough space is collected
to satisfy any remaining allocation requests.

Since a predictive need request assures an adequate amount of space, no garbage collection can
occur during the subsequent allocation request. The advantage of having a garbage collection occur
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during a predictive need request rather during an allocation request is that a safe time can be chosen
for a possible garbage collection. The amount of space needed (or at least an upper bound on it)
usually is known before the storage is actually needed. and when all valid data can be located from
the basis.

A few lines from the implementation of the image() function, showing how string images are
constructed, illustrates predictive need. The image will consist of a pair of double quotes, en-
closing a representation of the string contents with special characters escaped. If alcstr() is called
separately for the various components, they might be allocated non-contiguously. Reserving the
maximum space needed ahead of time guarantees subsequent calls to alcstr() will be contiguous.
The maximum needed for image would be StrLen(source)*4+2, done using a shift operator:

s = StrLoc(source);
len = StrLen(source);
Protect (reserve(Strings,(len << 2) + 2), return Error);
Protect(t = alcstr("\"", (word)(1)), return Error);
StrLoc(*dp2) = t;
StrLen(*dp2) = 1;
while (len-- > 0)

StrLen(*dp2) += doimage(*s++, ’"’);
Protect(alcstr("\"", (word)(1)), return Error);
++StrLen(*dp2);

A disadvantage of predictive need is that the maximum amount of storage needed must be
determined and care must be taken to make predictive need requests prior to allocation. These
problems do not occur in storage-management systems where garbage collection is implicit in
allocation.

RETROSPECTIVE: Storage management is one of the major concerns in the implementation
of a run-time system in which space is allocated dynamically and automatically. Although many
programs never garbage collect at all, for those that do, the cost of garbage collection may be
significant.

The requirements of storage management have a significant influence on the way that data is
represented in Icon, particularly in blocks. Aspects of data representation that may appear arbitrary
in the absence of considerations related to storage management have definite uses during garbage
collection.

The garbage collector can only identify those pointers of which it is informed. Globals are
informed by placing them in the basis set. Locals are informed by declaring them to be tended.
Descriptors and block pointers within blocks are specified in tables, indexed by the block’s type
code, that describe the number and positional offset of all pointers within the block.

While it is possible to devise more economical methods of representing such data at the expense



228

of complexity and loss of generality, any method of representing data for which space is allocated
automatically has some overhead.

Garbage collection is most expensive when there are many live objects that must be saved. For
programs in which allocated storage is used transiently and in which there are few live objects,
garbage collection is fast.

EXERCISES
12.1 Since the first word of a block contains its type code, why is there also a type code in a
descriptor that points to it?
12.2 Question removed: it no longer applies.
12.3 Give an example of an Icon expression that changes data in the icode region.
12.4 Why not combine global and static identifiers in a single array of descriptors in the icode
region?
12.5 Why are the names of global identifiers needed?
12.6 Why is there no array for the names of static identifiers?
12.7 How long can a string be?
12.8 How many elements can a single list-element block hold?
12.9 List all the regions of memory in which the following Icon data objects can occur:

• strings

• descriptors

• co-expression blocks

• other blocks

12.10 List all the source-language operations in Icon that may cause the allocation of storage.
12.11 Give an example of an expression for which it cannot be determined from the expression
itself whether or not it allocates storage.
12.12 List the block types for which block size may vary from one block to another.
12.13 List all the types of blocks that may occur in the allocated block region.
12.14 List all the types of blocks that may occur outside of the allocated block region.
12.15 Give an example of an Icon program in which the only access path to a live object during
garbage collection is a variable that points to an element in a structure.
12.16 Give an example of an Icon program that constructs a circular pointer chain.
12.17 Explain how it can be assured that all blocks in the allocated block region are at addresses
that are larger than the maximum type code.
12.18 Aside from the possibility of looping in the location phase of garbage collection, what are
the possible consequences of processing the descriptors in a block more than once?
12.19 What would happen if there were more than one pointer on quallist to the same qualifier?
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12.20 Because of the way that the Icon run-time system is written, blocks that are not in the al-
located block region do not contain pointers to allocated objects. Consequently, the descriptors in
such blocks do not have to be processed during garbage collection.

• What does this imply about access to such blocks?

• What changes would have to be made to the garbage collector if such blocks could contain
pointers to allocated objects?

12.21 Question removed: it no longer applies.
12.22 In the allocated string region, pointer adjustment and compaction are done in one pass, while
two passes are used in the allocated block region. Why are pointer adjustment and compaction not
done in a single pass over the allocated block region?
12.23 What would be the effect of failing to remove the m flag from a block title during the com-
paction of the allocated block region?
12.24 Question removed: it no longer applies.
12.25 Write a program that requires an arbitrarily large amount of space for quallist.
12.26 Write a program that causes an arbitrary amount of recursion in markblock during garbage
collection.
12.27 Write a program that produces an arbitrarily large amount of data that must be saved by
garbage collection, and observe the results.
12.28 Devise a more sophisticated method of preventing thrashing in allocation and garbage col-
lection than the fixed breathing-room method.
12.29 There is no mechanism to reduce the size of an allocated region that may be expanded during
one garbage collection, but which has an excessive amount of free space after another garbage
collection. Describe how to implement such a mechanism.
12.30 Suppose that a garbage collection could occur during a call of any C routine from any other
C routine. How would this complicate the way C routines are written?
12.31 What might happen if

• The amount of storage specified in a predictive need request were larger than the amount
subsequently allocated?

• The amount of storage specified in a predictive need request were smaller than the amount
subsequently allocated?

12.32 When a list-element block is unlinked as the result of a pop, get, or pull, can the space it
occupies always be reclaimed by a garbage collection? What are the general considerations in
answering questions such as these?
12.33 A variable that refers to a descriptor in a block points directly to the descriptor, with an offset
in its d-word to the head of the block in which the descriptor resides. Could it be the other way
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around, with a variable pointing to the head of the block and an offset to the descriptor? If so, what
are the advantages and disadvantages of the two methods?
12.34 Why does sweep process an interpreter stack from its sp to its base, rather than the other way
around?
12.35 As mentioned in Sec. 12.3, all regions are collected, regardless of the region in which space
is needed. Discuss the pros and cons of this approach.
12.36 Evaluate the cost of using two-word descriptors for all pointers to blocks, even when these
pointers do not correspond to source-language values (as, for example, in the links among list-
element blocks).
12.37 The need to garbage-collect blocks that are allocated during program execution significantly
affects the structure and organization of such blocks. Suppose that garbage collection were never
needed. How could the structure and organizations of blocks be revised to save space?
12.38 Discuss the pros and cons of having different regions for allocating blocks of different types.
12.39 Some expressions, such as

while write(read())

result in a substantial amount of “storage throughput,” even though no space really needs to be
allocated. Explain why this effect cannot be avoided in general and discuss its impact on program
performance.
12.40 Physical memory is becoming less and less expensive, and more computer architectures and
operating systems are providing larger user address spaces. Discuss how very large user address
spaces might affect allocation and garbage-collection strategies.



Chapter 13

Run-Time Support Operations

PERSPECTIVE: Several features of Icon’s run-time system cannot be compartmentalized as neatly
as storage management but present significant implementation problems nonetheless. These fea-
tures include type checking and conversion dereferencing and assignment, input and output, and
diagnostic facilities.

13.1 Type Checking and Conversion

Type checking is relatively straightforward in Icon. If only one type is of interest a test of the
d-word is sufficient, as in

if (Type(Arg1) != T_List)
runerr(108, &Arg1);

It is necessary to test the entire d-word, since a qualifier may have a length that is the same as a
type code. The d-word test takes care of this, because all descriptors that are not qualifiers have n
flags.

If different actions are needed for different types, a separate test is required for qualifiers, since
there is no type code for strings. The RTL runtime language’s type_case statement looks like a
switch, but is really performing a selection according to type generally of the form:

if (is:string(Arg1)) /* string */
...

else switch (Type(Arg1)) {
case T_List: /* list */

...

231



232

The real problems lie in type conversion, not type checking. At the source-language level,
type conversion can occur explicitly, as a result of type-conversion functions, such as string(x),
or it may be implicit. Implicit type conversion occurs frequently in many kinds of computations.
For example, numeric data may be read from files in the form of strings, converted to numbers
in arithmetic computations, and then converted to strings that are written out. Many operations
support this implicit type conversion, and they rely on type-conversion routines.

There are four types among which mutual conversion is supported: strings, csets, integers, and
real numbers. The details of type conversion are part of the Icon language definition (Griswold and
Griswold 1983). For example, when a cset is converted to a string, the characters of the resulting
string are in lexical order. Some conversions are conditional and may succeed or fail, depending
on the value being converted. For example, a real number can be converted to an integer only if its
value is in the range of a C long. The conversions are illustrated in the following diagram, where
dashed lines indicate conversions that are conditional:
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Thus, of the twelve conversions, five are conditional.
Some kinds of conversions are “natural” and occur frequently in typical programs. Examples

are string-to-integer conversion and integer-to-string conversion. Other conversions, such as cset-
to-integer, are unlikely to occur in the normal course of computation. To reduce the number of
conversion routines required, these unlikely conversions are done in two steps. For example, the
conversion of a cset to an integer is done by first converting the cset to a string and then converting
the string to an integer. The direct conversions are
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Conversions are done by calling routines that convert values to expected types. These routines
are

cnv_cset convert to cset

cnv_int convert to integer

cnv_real convert to real

cnv_str convert to string
Since these routines may be called with any type of value, all of them are conditional. For example,
it is not possible to convert a list to a string. These routines return the value CvtFail to indicate
the failure of a conversion. If conversion is successful, they return a value indicating the type of
conversion.

Numerical computation introduces complications in addition to the types integer and real, since
there is the concept of a numeric “type” that includes both integers and real numbers. This is
represented explicitly by the Icon type-conversion function numeric(x), which converts x to either
integer or real, depending on the value of x. Its implementation illustrates RTL’s extensions to
the C language for type conversions. Rtt can generate special-case functions for each call to nu-
meric(x), based on what it knows about the type information at that call site, and skip the checks
and conversions where they are not necessary.

function{0,1} numeric(n)
if cnv:(exact)integer(n) then {

abstract { return integer }
inline { return n; }
}

else if cnv:real(n) then {
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abstract { return real }
inline { return n; }
}

else {
abstract { return empty_type }
inline { fail; }
}

end

Numeric conversion also occurs implicitly in polymorphic operations such as
n+m

which performs integer or real arithmetic, depending on the types of n and m. The RTL language
was given an arith_case construct specifically to handle this issue. The general form of the arith-
metic operators looks like:

operator{1} icon_op func_name(x, y)
declare {

tended struct descrip lx, ly;
C_integer irslt;

}
arith_case (x, y) of {

C_integer: {
abstract { return integer }
inline {

extern int over_flow;
c_int_op(x,y);
}

}
integer: { /* large integers only */

abstract { return integer }
inline {

big_## c_int_op(x,y);
}

}
C_double: {

abstract { return real }
inline {

c_real_op(x, y);
}
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}
}

end

Internally, a macro GetReal() is used to handle the real type, since some computers have re-
strictions on the alignment of doubles. Thus, GetReal() has different definitions depending on the
target computer. The actual conversion of a string to a numeric value is done by ston(). Note that
the conversion of a cset to a numeric value occurs by way of conversion to a string.

When types are not known at compile-time, RTL constructs such as cnv:str(d) are translated
down to conversion routines in cnv.r. String conversion requires a buffer to construct the string. In
a common special-case, this buffer is provided by the routine that is requesting string conversion
for temporary use, avoiding the heap memory allocator. This is used, for example when a value is
converted to a string in order to convert it to a number. See Sec. 4.4.4. The code for the “temporary
string” version of string conversion is in a function tmp_str():

static int tmp_str(char *sbuf, dptr s, dptr d)
{
type_case *s of {

string:
*d = *s;

integer: {
if (Type(*s) == T_Lrgint) {

word slen, dlen;
slen = (BlkLoc(*s)->bignumblk.lsd -

BlkLoc(*s)->bignumblk.msd +1);
dlen=slen * NB * 0.3010299956639812; /* 1/log2(10) */
bigtos(s,d);
}

else
itos(IntVal(*s), d, sbuf);

}
real: {

double res;
GetReal(s, res);
rtos(res, d, sbuf);
}

cset:
cstos(BlkLoc(*s)->cset.bits, d, sbuf);

default:
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return 0;
}

return 1;
}

If a conversion is required, itos(), rtos(), or cstos() does the actual work, placing its result in sbuf
and changing the descriptor pointed to by d accordingly. These routines return a 1 if the result is a
string and a 0 otherwise. The monitoring facilities in Unicon can also report whether no conversion
was needed (E_Nconv), a conversion was performed successfully (E_Sconv), or the conversion
failed (E_Fconv).

If a converted string is in a buffer that is local to the calling routine, it must be copied into
allocated storage, or it would be destroyed when that routine returns. The fully general version of
cnv_str() is equivalent to the following function. Because this function is heavily called, in reality
the body of tmp_str() is inlined in cnv_str().

int cnv_str(dptr s, dptr d)
{
char sbuf[MaxCvtLen];

type_case *s of {
string: {

*d = *s;
return 1;
}

default: {
if (!tmp_str(sbuf, s, d)) return 0;
}

}
Protect(StrLoc(*d) = alcstr(StrLoc(*d), StrLen(*d)), fatalerr(0,NULL));
return 1;
}

13.2 Dereferencing and Assignment

If there were no trapped or keyword variables, dereferencing and assignment would be trivial. For
example, the descriptor d is dereferenced by

d = *VarLoc(d)

where VarLoc references the v-word of d:
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#define VarLoc(d) ((d).vword.dptr)

The dereferencing or assignment to a trapped variable, on the other hand, may involve a com-
plicated computation. This computation reflects the meaning associated with the operation on the
source-language expression that is represented in the implementation as a trapped variable. For
example, as discussed previously, in

x[y] := z

the value of x may be a list, a string, a table, or a record. A subscripted list or record does not
produce a trapped variable, but the other two cases do. For a string, the variable on the left side of
the assignment is a substring trapped variable. For a table, the variable is a table-element trapped
variable. In the first case, the assignment involves the concatenation of three strings and the as-
signment of the result to x. In the second case, it involves looking for y in the table. If there is a
table element for y, its assigned value is changed to the value of z. Otherwise, the table-element
trapped-variable block is converted to a table-element block with the assigned value, and the block
is inserted in the appropriate chain.

13.2.1 Dereferencing

Dereferencing of other trapped variables involves computations of comparable complexity. Deref-
erencing is done in the interpreter loop for arguments of operators for which variables are not
needed. For example, in

n+m

the identifiers n and m are dereferenced before the function for addition is called (See Sec. 8.3.1).
On the other hand, in

s[i]
the identifier i is dereferenced, but s is not, since the subscripting routine needs the variable as well
as its value.

The function invocation routine also dereferences variables before a function is called. Note
that there is no function that requires an argument that is a variable. Suspension and return from
procedures also dereference local identifiers and arguments. Dereferencing occurs in a number of
other places. For example, the function that handles subscripting must dereference the subscripted
variable to determine what kind of result to produce.

The dereferencing routine begins as follows:

void deref(s, d)
dptr s, d;

{
/*
* no allocation is done, so nothing need be tended.
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*/
register union block *bp, **ep;
struct descrip v;
int res;

if (!is:variable(*s)) {
*d = *s;
}

If s does not point to a variable descriptor, the remaining code is skipped.
If s points to a variable that is not a trapped variable, dereferencing is simple:

/*
* An ordinary variable is being dereferenced.
*/
*d = *(dptr)((word *)VarLoc(*s) + Offset(*s));

Otherwise, there are two types of trapped variables with a switch on the type:

type_case *s of {
tvsubs: {

/*
* A substring trapped variable is being dereferenced.
* Point bp to the trapped variable block and v to
* the string.
*/
bp = BlkLoc(*s);
deref(&bp->tvsubs.ssvar, &v);
if (!is:string(v))

fatalerr(103, &v);
if (bp->tvsubs.sspos + bp->tvsubs.sslen - 1 > StrLen(v))

fatalerr(205, NULL);
/*
* Make a descriptor for the substring by getting the
* length and pointing into the string.
*/
StrLen(*d) = bp->tvsubs.sslen;
StrLoc(*d) = StrLoc(v) + bp->tvsubs.sspos - 1;

}
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tvtbl: {
/*
* Look up the element in the table.
*/

bp = BlkLoc(*s);
ep = memb(bp->tvtbl.clink,&bp->tvtbl.tref,

bp->tvtbl.hashnum,&res);
if (res == 1)

*d = (*ep)->telem.tval; /* found; use value */
else

*d = bp->tvtbl.clink->table.defvalue;/*use default */
}

A table-element trapped variable may point to a table-element trapped-variable block or to
a table-element block. The second situation occurs if two table-element trapped variables point
to the same table-element trapped-variable block and assignment to one of the variables converts
the table-element trapped-variable block to a table-element block before the second variable is
processed. See Sec. 7.2. In this case, the value of the trapped variable is in the table-element block.
On the other hand, if the trapped variable points to a table-element trapped-variable block, it is
necessary to look up the subscripting value in the table, since an assignment for it may have been
made between the time the trapped variable was created and the time it was dereferenced. If it is in
the table, the corresponding assigned value is returned. If it is not in the table, the default assigned
value is returned.

The last case, keyword variables, is almost the same as for simple variables. These variables
impose special semantics on assignment, but not on dereferencing.

kywdint:
kywdpos:
kywdsubj:
kywdevent:
kywdwin:
kywdstr:

*d = *VarLoc(*s);

13.2.2 Assignment

The values of global identifiers are established initially as a byproduct of reading the icode file into
the icode region. When procedures are called, the values of arguments and local identifiers are
on the interpreter stack. These operations associate values with variables, but assignment, unlike
dereferencing, is explicit in the source program.
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The macro GeneralAsgn() is used to perform all such operations. For example, the function for
x := y

is

operator{0,1} := asgn(underef x, y)
if !is:variable(x) then

runerr(111, x)
abstract {

return type(x)
}

GeneralAsgn(x, y)
inline {

/*
* The returned result is the variable to which assignment
* is being made.
*/

return x;
}

end

Note that assignment may fail. This can occur as the result of an out-of-range assignment to
&pos and is indicated by an RTL fail statement from within GeneralAsgn().

Like dereferencing, assignment is trivial for variables that are not trapped. The macro Gener-
alAsgn() begins as follows:

#begdef GeneralAsgn(x, y)
type_case x of {

As for dereferencing, there are two types of trapped variables to be considered. Assignment to
a substring trapped variable is rather complicated and deferred to a function subs_asgn():

tvsubs: {
abstract {

store[store[type(x).str_var]] = string
}

inline {
if (subs_asgn(&x, (const dptr)&y) == Error)

runerr(0);
}

}

The function subs_asgn():
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int subs_asgn(dptr dest, const dptr src)
{
tended struct descrip deststr, srcstr, rsltstr;
tended struct b_tvsubs *tvsub;

char *s, *s2;
word i, len;
word prelen;/* length of portion of string before substring */
word poststrt, postlen; /* start and length of portion of

string following substring */
if (!cnv:tmp_string(*src, srcstr))

ReturnErrVal(103, *src, Error);
/*
* Be sure that the variable in the trapped variable points
* to a string and that the string is big enough to contain
* the substring.
*/
tvsub = (struct b_tvsubs *)BlkLoc(*dest);
deref(&tvsub->ssvar, &deststr);
if (!is:string(deststr))

ReturnErrVal(103, deststr, Error);
prelen = tvsub->sspos - 1;
poststrt = prelen + tvsub->sslen;
if (poststrt > StrLen(deststr))

ReturnErrNum(205, Error);

/*
* Form the result string.
* Start by allocating space for the entire result.
*/
len = prelen + StrLen(srcstr) + StrLen(deststr) - poststrt;
Protect(s = alcstr(NULL, len), return Error);
StrLoc(rsltstr) = s;
StrLen(rsltstr) = len;
/*
* First, copy the portion of the substring string to
* the left of the substring into the string space.
*/
s2 = StrLoc(deststr);
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for (i = 0; i < prelen; i++)
*s++ = *s2++;

/*
* Copy the string to be assigned into the string space,
* effectively concatenating it.
*/

s2 = StrLoc(srcstr);
for (i = 0; i < StrLen(srcstr); i++)

*s++ = *s2++;
/*
* Copy the portion of the substring to the right of the
* substring into the string space, completing the result.
*/

s2 = StrLoc(deststr) + poststrt;
postlen = StrLen(deststr) - poststrt;
for (i = 0; i < postlen; i++)

*s++ = *s2++;

/*
* Perform the assignment and update the trapped variable.
*/

type_case tvsub->ssvar of {
kywdevent: {

*VarLoc(tvsub->ssvar) = rsltstr;
}

kywdstr: {
*VarLoc(tvsub->ssvar) = rsltstr;
}

kywdsubj: {
*VarLoc(tvsub->ssvar) = rsltstr;
k_pos = 1;
}

tvtbl: {
if (tvtbl_asgn(&tvsub->ssvar, (const dptr)&rsltstr) == Error)

return Error;
}

default: {
Asgn(tvsub->ssvar, rsltstr);
}
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}
tvsub->sslen = StrLen(srcstr);
return Succeeded;
}

Table-element trapped variables are once again deferred in GeneralAsgn() to call to a function,
tvtbl_asgn():

tvtbl: {
abstract {

store[store[type(x).trpd_tbl].tbl_val] = type(y)
}

inline {
if (tvtbl_asgn(&x, (const dptr)&y) == Error)

runerr(0);
}

}

Table-element trapped variables have the same possibilities for assignment as for dereferencing.
The processing is more complicated, since it may be necessary to convert a table-element trapped-
variable block into a table-element block and link it into a chain. Parameters cannot be tended, so
their information must be preserved in tended variables before anything is allocated.

int tvtbl_asgn(dptr dest, const dptr src)
{

tended struct b_tvtbl *bp;
tended struct descrip tval;
struct b_telem *te;
union block **slot;
struct b_table *tp;
int res;

/*
* Allocate table element now (even if we may not need it)
* because slot cannot be tended. Parameters have to be
* preserved in tended variables first.
*/
bp = (struct b_tvtbl *) BlkLoc(*dest);
tval = *src;
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Protect(te = alctelem(), return Error);

/*
* First see if reference is in the table; if it is, just
* update the value. Otherwise, allocate a new table entry.
*/

slot = memb(bp->clink, &bp->tref, bp->hashnum, &res);

if (res == 1) {
/*
* Do not need new te, just update existing entry.
*/

deallocate((union block *) te);
(*slot)->telem.tval = tval;
}

else {
/*
* Link te into table, fill in entry.
*/

tp = (struct b_table *) bp->clink;
tp->size++;

te->clink = *slot;
*slot = (union block *) te;

te->hashnum = bp->hashnum;
te->tref = bp->tref;
te->tval = tval;

if (TooCrowded(tp)) /* grow hash table if now too full */
hgrow((union block *)tp);

}
return Succeeded;

}

In the case of a keyword variable, the semantic requirements of the keyword are expressed in
the usual mixture of RTL and C, except that type information is guaranteed not to change. The
code for &subject is typical:

kywdsubj: {
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/*
* No side effect in the type realm = no abstract clause
* &subject is still a string and &pos is still an int.
*/

if !cnv:string(y, *VarLoc(x)) then
runerr(103, y);

inline {
k_pos = 1;
}

}

13.3 Input and Output

Icon supports only sequential file access. The run-time system uses C library routines to perform
input and output, so the main implementation issues are those that relate to interfacing these rou-
tines.

13.3.1 Files

A value of type file in Icon points to a block that contains the usual title word, a FILE * reference to
the file, a status word, and the string name of the file. The common file status values include

0 closed

1 open for reading 64 last operation was read

2 open for writing 128 last operation was write

4 open to create 256 I/O on a window (graphics)

8 open to append 512 untranslated mode

16 open as a pipe 1024 reading a directory
These decimal numbers correspond to bits in the status word. Depending on how it was built,
Unicon defines other file status values – see the file src/h/rmacros.h for details.
For example, the value of &input is

6
- "&input"
file name

1 file status

file
- file

filenp
-
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while the value of &output is

7
- "&output"
file name

2 file status

file
- file

filenp
-

Another example is

out := open("log", "a")

for which the value of out is

3
- "log"
file name

10 file status

file
- file

filenp
-

Note that the file status is 10, corresponding to being open for writing and appending.
Closing a file, as in

close(out)

merely changes its file status:

3
- "log"
file name

0 file status

file
- file

filenp
-

13.3.2 Reading and Writing Data

The function read(f) reads a line from the file f. In UNIX, a line is just a string of characters up
to a newline character. There is no limit on the length of a line and the length of a line cannot be
determined before it is read. On the other hand, there must be a place to store the line.

Characters are read into a buffer until a newline character is encountered or the buffer size (by
default 512) is reached. A predictive need request is then made to assure that there is enough space
in the allocated string region for the string, and the string is copied from the buffer into the string
region. This is repeated as needed.
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The function reads(f,i) reads i characters from the file f. These characters may include newline
characters. There is no limit on i other than available memory. A predictive need request can be
made to assure that there is enough space in the allocated string region. Characters are then read
directly into the allocated string region without the use of an intervening buffer.

When strings are written, they are written directly from the allocated string region. There is no
need to perform any allocation or to use an intermediate buffer.

Several strings can be concatenated on a file by

write(s1 , s2, ..., sn)

This avoids the internal allocation and concatenation that is required for

write(s1 || s2 || ...|| sn)

13.4 Diagnostic Facilities

Icon’s diagnostic facilities consist of

• The function image(x), which produces a string representation of the value of x.

• The function display(f, i), which writes the names and values of identifiers in at most i levels
of procedure call to the file f.

• Tracing of procedure calls, returns, resumptions, and suspensions.

• Run-time error termination messages.

• Unicon has extra facilities to debug the heap – see section D.6.2 on page 605.

Procedure tracing is done in the virtual machine instructions invoke, pret, pfail, and psusp. If
the value of &trace is nonzero, it is decremented and an appropriate trace message is written to
standard error output. See Sec. 2.1.12 for an example.

The function display(f,i) must locate the names and values of local identifiers and arguments.
The names are in the procedure block for the current procedure, which is pointed to by the zeroth
argument of the current procedure call. The values are on the interpreter stack as described in Sec.
10.3.3.

Run-time termination messages are produced by the C routine runerr(n,dp), where dp is a
pointer to the descriptor for the offending value. The value NULL is used for dp in cases where
there is no offending value to print.

In all of these diagnostic situations, string representations of values are needed. The string
representation for the "scalar" types string, cset, integer, and real is similar to what it is in the text
of a source-language program. Long strings and csets are truncated to provide output that is easy
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to read. Other types present a variety of problems. For procedures, the type and procedure name
are given.

A list, on the other hand, may be arbitrarily large and may contain values of any type, even
lists. While the name may suffice for a procedure, often more information about a list is needed.
As a compromise between information content and readability, only the first three and last three
elements of a long list are included in its string representation. Since lists and other non-scalar
types may be elements of lists, their representation as elements of a list is more restricted, with
only the type and size being shown.

Since trace, display, and error output are written to files, the string representations can be written
as they are determined, without regard for how long they are. The function image(x), on the other
hand, returns a string value, and space must be allocated for it. A more limited form of string
representation is used for non-scalar values, since the space needed might otherwise be very large.

EXERCISES
13.1 It is possible to conceive of meaningful ways to convert any type of data in Icon to any other.
For example, a procedure might be converted to a string that consists of the procedure declaration.
How would such a general conversion feature affect the way that types are converted in the run-time
system?
13.2 On computers with 16-bit words, Icon has two representations for integers internally (see Sec.
4.1.3). Describe how this complicates type conversion.
13.3 How would the addition of a new numeric type, such as complex numbers, affect type conver-
sion?
13.4 How big would MaxCvtLen be if Icon had 512 different characters? 128? 64?
13.5 List all the source-language operations that perform assignment.
13.6 Assuming that x, y, z, and w all have string values, diagram the structures that are produced in
the course of evaluating the following expressions:

x[y] := z
z := x[y]
x[y] := z[w]
x[y][z] := w

Repeat this exercise for the case where all the identifiers have tables as values.
13.7 Give an expression in which a table-element trapped variable points to a table-element block
rather than to a table-element trapped-variable block.
13.8 Give an expression in which a table-element trapped variable points to a table-element trapped-
variable block, but where there is a table-element block in the table with the same entry value.
13.9 Why are tended descriptors needed in assignment but not in dereferencing?
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13.10 Show an expression in which, at the end of the case for assignment to a substring trapped
variable, the variable to which the assignment is to be made is a trapped variable. Can such a
trapped variable be of any of the three types?
13.11 Why is the string produced by read(f) not read directly into the allocated string region?
13.12 Are there any circumstances in which write(x1, x2, ..., xn) requires the allocation of storage?
13.13 Identify all the portions of blocks for source-language values that are necessary only for
diagnostic output. How significant is the amount of space involved?
13.14 Question removed: it has been overtaken by subsequent versions after Version 6.
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Part II

An Optimizing Compiler for Icon
by Kenneth W. Walker
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Preface to Part II

There are many optimizations that can be applied while translating Icon programs. These optimiza-
tions and the analyses needed to apply them are of interest for two reasons. First, Icon’s unique
combination of characteristics requires developing new techniques for implementing them. Sec-
ond, these optimizations are useful in variety of languages and Icon can be used as a medium for
extending the state of the art.

Many of these optimizations require detailed control of the generated code. Previous production
implementations of the Icon programming language have been interpreters. The virtual machine
code of an interpreter is seldom flexible enough to accommodate these optimizations and modifying
the virtual machine to add the flexibility destroys the simplicity that justified using an interpreter
in the first place. These optimizations can only reasonably be implemented in a compiler. In
order to explore these optimizations for Icon programs, a compiler was developed. This part of the
compendium describes the compiler and the optimizations it employs. It also describes a run-time
system designed to support the analyses and optimizations.

Icon variables are untyped. The compiler contains a type inferencing system that determines
what values variables and expression may take on during program execution. This system is ef-
fective in the presence of values with pointer semantics and of assignments to components of data
structures.

The compiler stores intermediate results in temporary variables rather than on a stack. A simple
and efficient algorithm was developed for determining the lifetimes of intermediate results in the
presence of goal-directed evaluation. This allows an efficient allocation of temporary variables to
intermediate results.

The compiler uses information from type inferencing and liveness analysis to simplify gener-
ated code. Performance measurements on a variety of Icon programs show these optimizations to
be effective.

The optimizing compiler for Icon was developed by Ken Walker as part of his Ph.D. research,
and this part of the Icon/Unicon Compendium is essentially a reprint of his dissertation, which also
appeared as University of Arizona CS TR 91-16. Along with his consent, Ken kindly provided the
original groff sources to his dissertation. Any typographical and formatting errors that remain are
the fault of the editor.
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Chapter 14

The Optimizing Compiler

Iconc is a practical and complete optimizing compiler for a unique and complex programming
language. Part II describes the theory behind several parts of the compiler and describes the imple-
mentation of all interesting aspects of the compiler.

14.1 Motivation

The motivation for developing a compiler for the Icon programming language is to have a vehi-
cle for exploring optimization techniques. Some performance improvements can be obtained by
modifying the run-time system for the language, for example by implementing alternative data
structures or storage management techniques. These improvements may apply to a broad class
of programs and the techniques can reasonably be implemented in an interpreter system. How-
ever, other techniques, such as eliminating unnecessary type checking, apply to expressions within
specific programs. The Icon interpreter described in Part I is based on a virtual machine with a rel-
atively small instruction set of powerful operations. A small instruction set is easier to implement
and maintain than a large one, and the power of many of the individual operations insures that the
overhead of the decoding loop is not excessive. The disadvantage of this instruction set is that an
Icon translator that generates code for the interpreter does not have enough flexibility to do many of
the possible program-specific optimizations. It is possible to devise a set of more primitive virtual
machine instructions that expose more opportunities for these optimizations. Increasingly prim-
itive instruction sets provide increasingly more opportunities for optimizations. In the extreme,
the instruction set for a computer (hardware interpreter) can be used and the translator becomes
a compiler. A compiler was chosen for this research because it is a good vehicle for exploring
program-specific optimizations and eliminates the overhead of a software interpreter which might
otherwise become excessive.
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14.2 Type Inferencing

Most Icon operations require operands with specific types. The types of the actual operands in an
expression must be checked and possibly converted to the required types. However, Icon variables
are untyped; in general, this checking cannot done at translation time. The Icon interpreter takes
the simple approach to the problem and performs all of the type checking for an expression every
time it is executed. For most programs, a type inferencing system can provide the information
needed to do much of the checking at translation time, eliminating the need for these checks at
run time. A type inferencing system determines the types that elements of a program (variables,
expression, procedures, etc) can take on at run time. The Icon compiler contains an effective and
practical type inferencing system, and implements code generation optimizations that make use of
the information produced by the type inferencing system.

Two basic approaches have been taken when developing type inferencing schemes. Schemes
based on unification [.Milner,smltlk type,unify.] construct type signatures for procedures; schemes
based on global data flow analysis [.typinfer, typrcsv, flwanal, progflw.] propagate throughout a
program the types variables may take on. One strength of the unification approach is that it is effec-
tive at handling polymorphous procedures. Such schemes have properties that make them effective
in implementing flexible compile-time type systems. Much of the research on them focuses on this
fact. The primary purpose of the type inferencing system for the Icon compiler is to eliminate most
of the run-time type checking rather than to report on type inconsistencies at compile time, so these
properties have little impact on the choice of schemes used in the compiler. Type inferencing sys-
tems based on unification have a significant weakness. Procedure type-signatures do not describe
side effects to global variables. Type inferencing schemes based on unification must make crude
assumptions about the types of these variables.

Schemes based on global data flow analysis handle global variables effectively. Many Icon
programs make significant use of global variables; this is a strong argument in favor of using this
kind of type inferencing scheme for Icon. These schemes do a poor job of inferring types in the
presence of polymorphous procedures. It is generally too expensive for them to compute the result
type of a call in terms of the argument types of that specific call, so result types are computed
based on the aggregate types from all calls. Poor type information only results if polymorphism is
actually exploited within a program.

The primary use of polymorphous procedures is to implement abstract data types. Icon, on the
other hand, has a rich set of built-in data types. While Icon programs make heavy use of these built-
in data types and of Icon’s polymorphous built-in operations, they seldom make use of user-written
polymorphous procedures. While a type inferencing scheme based on global data flow analysis is
not effective in inferring the precise behavior of polymorphous procedures, it is effective in utilizing
the predetermined behavior of built-in polymorphous operations. These facts combined with the
observation that Icon programs often make use of global variables indicate that global data flow
analysis is the approach of choice for type inferencing in the Icon compiler.
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Icon has several types of non-applicative data structures with pointer semantics. They all can be
heterogeneous and can be combined to form arbitrary graphs. An effective type inferencing system
must handle these data structures without losing too much information through crude assumptions.
These composite data structures typically consist of a few basic elements used repeatedly and they
logically have a recursive structure. A number of type inferencing systems handle recursion in
applicative data structures [.analrcsv,prlgtyp,typrcsv.]; the system described here handles Icon data
types that have pointer semantics and handles destructive assignment to components of data struc-
tures. Analyses have been developed to handle pointer semantics for problems such as allocation
optimizations and determining pointer aliasing to improve other analyses. However, most of these
analyses lose too much information on heterogeneous structures of unbounded depth (such as the
mutually referencing syntax trees and symbol tables commonly found in a translator) to be effective
type inferencing systems [.progflw,depptr.].

Work by Chase, Wegman, and Zadeck [.pntstr.] published subsequent to the original technical
report on the Icon type inferencing system [.tr88-25.] presents a technique similar to the one used
in this type inferencing system. They use a minimal language model to describe the use of the tech-
nique for pointer analysis. They speculate that the technique might be too slow for practical use and
propose methods of improving the technique in the context of pointer analysis. Use of the proto-
type Icon type inferencing system described in the original technical report indicates that memory
usage is more of a problem than execution time. This problem is addressed in the implementation
of type inferencing in the Icon compiler.

14.3 Liveness Analysis

Type checking optimizations can be viewed as forms of argument handling optimizations. Other
argument handling optimizations are possible. For example, when it is safe to do so, it is more
efficient to pass a variable argument by reference than to copy it to a separate location and pass a
reference to that location (this particular opportunity for optimization arises because of implemen-
tation techniques borrowed from the Icon interpreter – Icon values are larger than pointers and Icon
parameter passing is built on top of C parameter passing). Such optimizations are not possible in
a stack-based execution model; a temporary-variable model is needed and such a model is used by
the Icon compiler. Icon’s goal-directed evaluation can extend the lifetime of the intermediate val-
ues stored in temporary variables. Icon presents a unique problem in liveness analysis, which is the
static determination of the lifetime of values in a program [ASU86, progflw.]. While this problem,
like other liveness problems, can be solved with traditional techniques, it has enough structure that
it can be solved without precomputing a flow graph or using expensive forms of data flow analysis.

The only previous implementation of Icon using a temporary-variable model is a partial imple-
mentation by Christopher [.tccompile.]. Christopher uses the fact that Icon programs contain many
instances of bounded goal-directed evaluation to deduce limits for the lifetimes of intermediate
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values. However, this approach produces a very crude estimate for these lifetimes. While overesti-
mating the lifetime of intermediate values results in a safe allocation of temporary variables to these
values, a fine-grained liveness analysis results in the use of fewer temporary variables. The Icon
compiler addresses this problem of fine-grained liveness analysis in the presence of goal-directed
evaluation and addresses the problem of applying the information to temporary variable allocation.

14.4 Analyzing Goal-Directed Evaluation

Many kinds of analyses of Icon programs must deal with Icon’s goal-directed evaluation and its
unique control structures. These analyses include type inferencing, liveness analysis, and the con-
trol flow analyses in O’Bagy’s prototype compiler [.tr88-31.]. Determining possible execution
paths through an Icon program is more complicated than it is for programs written in more con-
ventional languages. The implementation of the type inferencing system and liveness analysis here
explore variations on the techniques presented by O’Bagy.

The Organization of Part II
Part II is logically divided into three subparts. Chapters 14 through 16 present the main ideas

upon which the compiler is based, Chapters 17 through 22 describe the implementation of these
ideas, and Chapter 23 presents performance measurements of compiled code.

Chapter 14 describes the code generated by the compiler. It explains how Icon data values,
variables, and goal-directed evaluation are implemented, independent of the actual translation pro-
cess. Chapter 15 presents a theoretical model of the type inferencing system used in the compiler.
The model includes the important ideas of the type inferencing system, while ignoring some purely
pragmatic details. Chapter 16 explains the liveness analysis problem and presents the solution used
in the compiler.

The Icon compiler is designed to be a production-quality system. The compiler system consists
of the compiler itself and a run-time system. The fact that these two components are not entirely in-
dependent must be carefully considered in the design of such a production-quality system. Chapter
17 describes the system as a whole and how the interactions between the components are handled.

Chapter 18 presents the organization of the compiler itself. This chapter describes some parts
of the compiler in detail, but defers major topics to other chapters. Chapter 19 builds on the model
presented in Chapter 15 and describes the full type inferencing system used in the compiler and
its implementation. Chapter 20 describes the translation techniques used to produce code from
expressions that employ Icon’s goal-directed evaluation scheme and its unique control structures.
It also describes the allocation of temporary variables using the information produced by liveness
analysis.

The code generator does no look-ahead and as a result it often produces code that is poor when
taken in context of subsequent code. This problem is shared with most code generators as are some
of the solutions used in this compiler. The unique code generation techniques required by Icon’s
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goal-directed evaluation produce unusual variations of this problem and require some innovative
solutions in addition to the standard ones. Chapter 21 describes the various techniques employed
to handle this problem. Chapter 22 describes the optimizations that can be done using the results
of type inferencing. These optimizations also make use of liveness information.

Chapter 23 demonstrates the effects of the various optimizations used in the compiler on the
performance of specific kinds of expressions. It also presents measurements of the performance of
compiled code for a variety of complete programs, comparing the performance to that of the Icon
interpreter. In addition, the sizes of the executable code for the complete programs are presented.
The conclusions, Chapter 24, summarize what has been done and lists some work that remains
to be explored. Chapter 25 describes one successful project to improve the compiler and make it
usable on larger programs.
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Chapter 15

The Translation Model

Modern compilers seldom produce machine code directly. They translate a program into a form
closer to machine code than the source language and depend on other tools to finish the translation.
If the compiler produces an object module, it depends on a linker and a loader to produce executable
code. If the compiler produces assembly language, it also depends on an assembler. A trend among
compilers produced in research environments has been to produce C code [.cbook,ansi-c.], adding
a C compiler to the list of tools required to finish the translation to machine code [Andrews88,
Ramakrishnan, Bartlett 89, Yuasa,Stroustrup,yacc,lex.]. The Icon compiler takes this approach and
generates C code.

There are several advantages to compiling a language into C. Low-level problems such as reg-
ister allocation and the selection and optimization of machine instructions are handled by the C
compiler. As long as these problems are outside the scope of the research addressed by the com-
piler, it is both reasonable and effective to allow another compiler to deal with them. In general, it
is easier to generate code in a higher-level language, just as it is easier to program in a higher-level
language. As long as the target language lies on a “nearly direct path” from the source language to
machine code, this works well. C is closely matched to most modern machine architectures, so few
tangential translations must be done in generating C code from Icon.

Another advantage of generating C code is that it greatly increases the portability of the
compiler and facilitates cross-compilation. The popularity of C in recent years has resulted in
production-quality C compilers for most systems. While the implementation of Icon in C contains
some machine and system dependencies, C’s conditional compilation, macro, and file inclusion
facilities make these dependencies relatively easy to deal with when they arise. These facts make
possible the development of a highly portable Icon compiler, allowing the compiler’s effectiveness
to be tested by Icon’s large user community.
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15.1 Data Representation

Because the target language is C, Icon data must be represented as C data. The careful represen-
tation of data and variables is important to the performance of an implementation of a high-level
language such as Icon. In addition, information provided by type inferencing can be used to op-
timize these representations. However, such considerations are largely outside the scope of this
current research. For this reason, the representations used in code produced by this compiler and
the compiler’s run-time system are largely unchanged from those of the Icon interpreter system
described in Part I. The interpreter’s run-time system is written in C. Therefore borrowing its data
representations for the compiler system is simple. This choice of representation means that the
run-time system for the compiler could be adapted directly from the run-time system for the in-
terpreter, and it allowed the compiler development to concentrate on parts of the system addressed
by this research. In addition, this choice of representation allows a meaningful comparison of the
performance of compiled code to the performance of interpreted code.

An Icon value is represented by a two-word descriptor (see Section 4.1). The first word, the
d-word, contains type information. In the case of a string value, the type is indicated by zero in a
high-order bit in the d-word, and the length of a string is stored in low-order bits of the d-word.
All other types have a one in that bit and further type information elsewhere in the d-word. The
v-word of a descriptor indicates the value. The v-word of the null value is zero, the v-word of an
Icon integer is the corresponding C integer value, and v-words of other types are pointers to data.
A descriptor is implemented with the following C structure:

struct descrip {
word dword; /* type field */
union {

word integr; /* integer value */
char sptr; /* pointer to character string */
union block bptr; /* pointer to a block */
dptr descptr; /* pointer to a descriptor */

} vword;
};

word is defined to be a C integer type (one that is at least 32-bits long), block is a union of structures
implementing various data types, and dptr is a pointer to a descrip structure.

15.2 Intermediate Results

While the representation of data in the compiler is the same as in the interpreter, the method of
storing the intermediate results of expression evaluation is not. Two basic approaches have been
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used in language implementations to store intermediate results. A stack-based approach is simple
and dynamic. It requires no pre-analysis of expressions to allocate storage for the intermediate
results, but the simple rigid protocol allows little room for optimization. For Icon there is an
additional problem with a stack-based approach. Goal-directed evaluation extends the lifetime
of some intermediate results, requiring that the top elements of the evaluation stack be copied at
critical points in execution [see Part I, or UA tr88-31]. In spite of the need for this extra copying,
most previous implementations of Icon have been implemented with an evaluation stack.

An alternative to using a stack is to pre-allocate a temporary variable for each intermediate
result. In this model, operations take explicit locations as arguments. Therefore an operation can
directly access program variables as arguments; there is no need to perform the extra operations
of pushing addresses or values on a stack. In addition, the lifetime of a temporary variable is not
determined by a rigid protocol. The compiler can assign an intermediate result to a temporary
variable over an arbitrary portion of the program, eliminating the copying needed to preserve a
value beyond the lifetime imposed by a stack-based approach. This compiler uses the temporary-
variable model because it allows more opportunities to optimize parameter handling, a major goal
of this research.

Icon’s automatic storage management dictates the use of a garbage collector in the run-time
system. When this garbage collector is invoked, it must be able to locate all values that may be
used later in the program. In the interpreter system, intermediate values and local variables are
stored on the same stack. The garbage collector sweeps this stack to locate values. In the compiler,
a different approach is taken to insure that all necessary values are locatable. Arrays of descriptors
are allocated contiguously along with a count of the number of descriptors in the array. The arrays
are chained together. An array of descriptors may be local to a C function, or it may be allocated
with the malloc library function. The garbage collector locates values by following the chain and
scanning the descriptors in each array. These descriptors are referred to as tended descriptors.

15.3 Executable Code

Even more important than where intermediate results are stored is how they are computed. Some
aspects of Icon expression evaluation are similar to those of many other languages, but others
aspects are not. Goal-directed evaluation with backtracking poses a particular challenge when im-
plementing Icon expression evaluation. The Icon interpreter is based on a virtual machine that
includes backtracking, as are Prolog interpreters based on the Warren Abstract Machine [.wam.].
While details differ between the Icon and Prolog virtual machines, their implementation of control
backtracking is based on the same abstract data structures and state variables. Such a virtual ma-
chine contains a stack of procedure frames, but the stack is maintained differently from that of a
virtual machine that does not implement goal-directed evaluation.

The difference manifests itself when a procedure produces a result, but has alternate results that
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it can produce in the event of backtracking. When this occurs, the frame for the procedure remains
on the stack after control returns to the caller of the procedure. This frame contains the information
needed to produce the alternate results. The left stack in the following diagram shows that proce-
dure f has called procedure g. The arrows on the left of the stack represent the backtracking chain
of procedures that can produce alternate results. btp points to the head of the backtracking chain
which currently starts further down in the stack. The arrows on the right represent the call chain of
procedures. fp points to the frame of the currently executing procedure.

. . .

. . .

. . .

. . .

. . .

. . .

f f f

g g g

h

btp

btp btpfp

fp

fp

Figure 15.1: The backtracking chain

Suppose g produces the first of several possible results. Execution returns to f and g’s frame
is added to the backtracking chain. This is represented by the middle stack in the diagram. If f
then calls h, its procedure frame is added to the top of the stack as shown in the right stack in the
diagram.

If h produces a result and is not capable of producing more, execution returns to f and the stack
again looks like the one in the middle of the diagram (the program pointer within f is different, of
course). If h produces a result and is capable of producing more, execution returns to f, but h’s
frame remains on the stack and is added to the head backtracking chain, similar to what was done
when g produced a result. If h produces no results, backtracking occurs. h’s frame is removed from
the stack, execution returns to the procedure g who’s frame is at the head of the backtracking chain,
and g’s frame is removed from the head of the chain. The stack once again looks like left stack in
the diagram and g proceeds to produce another result.

Traditional languages such as Pascal or C present high-level virtual machines that contain no
notion of backtracking and have no need to perform low-level stack manipulations. Icon expres-
sions with goal-directed evaluation cannot be translated directly into such languages. This is the
fundamental problem that must be addressed when designing a compiler for Icon. O’Bagy presents
an elegant solution to this problem in her dissertation [.tr88-31.]. Her solution is used by this op-
timizing compiler as a basis for translating Icon expressions into C code. The rest of this section
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contains a brief explanation of the variation of her approach that is used in the compiler, while ex-
ploring useful ways of viewing the problem. O’Bagy’s dissertation describes how control structures
not covered in this discussion can be implemented using her model.

Formal semantics is one tool that can be used in understanding a language [.gordon de-
note,stoy.]. The added complexity caused by Icon’s goal-directed evaluation is reflected in Gude-
man’s description of Icon using denotational semantics [.gudeman denotational.]. While conven-
tional programming languages can be described using one continuation for each expression, Icon
requires two continuations. One continuation for an expression embodies the rest of the program if
the expression succeeds, while the other embodies the rest of the program if the expression fails.

The Icon compiler uses the notion of success continuations to implement goal-directed evalua-
tion. However, these continuations violate some of the properties traditionally associated with con-
tinuations. A continuation in denotational semantics and in the language Scheme [.Abelson,[Rees
86].] is a function that never returns. However, the success continuations produced by the compiler
implement backtracking by returning. In addition, these continuations implement the rest of the
current bounded expression rather than the rest of the entire program. Note that unlike continu-
ations in Scheme, these continuations are created at compile time, not at run time. Some Prolog
compilers have been based on a similar continuation-passing technique [.Nilsson,Ramakrishnan.].

The C language is oriented toward an imperative style of programming. In order to produce ef-
ficient code, the Icon compiler should not generate an excessive number of function calls. Specif-
ically, it should avoid creating continuations for every expression. A more operational view of
Icon’s semantics and of C’s semantics can be useful in understanding how to accomplish this. An
operation in Icon can succeed or fail. In the view of denotational semantics, the question of what
will be done in each case must be answered, with the answers taking the form of functions. In
an operational view, the questions can take the form of where to go in each case. The answers to
these questions can be any type of transfer of control supported by the C language: execute the next
sequential instruction, execute a function, return from a function, or go to a label.

Most operations in Icon are monogenic. That is, they produce exactly one result, like operations
in conventional languages. For these operations, the compiler can generate code whose execution
simply falls through into the code that implements the subsequent operation.

Conditional operations are more interesting. These operations either produce a single value
or fail. If such an operation succeeds, execution can fall through into code implementing the
subsequent operation. However, if the operation fails, execution must transfer elsewhere in the
program. This is accomplished by branching to a failure label. If the code for the operation is
put in-line, this is straightforward. However, if the operation (either a built-in operation or an Icon
procedure) is implemented by a separate C function, the function must notify the caller whether it
succeeded or failed and the caller must effect the appropriate transfer of control.

By convention, C functions produced by the compiler and those implementing the run-time
routines each return a signal (this convention is violated in some special cases). A signal is an
integer (and is unrelated to Unix signals). If one of these C functions needs to return an Icon value,
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it does so through a pointer to a result location that is passed to it as an argument. Two standard
signals are represented by the manifest constants A_Continue and A_Resume. A return (either an
Icon return expression or the equivalent construct in a built-in operation) is implemented with code
similar to

*result = operation result ;
return A_Continue;

Failure is implemented with the code
return A_Resume;

The code implementing the call of an operation consists of both a C call and signal-handling code.

switch (operation(args, &result)) {
case A_Continue: break;
case A_Resume: goto failure label;

}

This code clearly can be simplified. This form is general enough to handle the more complex
signal handling that can arise during code generation. Simplifying signal handling code is described
in Chapter 21.

Generators pose the real challenge in implementing Icon. A generator includes code that must
be executed if subsequent failure occurs. In addition, a generator, in general, needs to retain state
information between suspending and being resumed. As mentioned above, this is accomplished
by calling a success continuation. The success continuation contains subsequent operations. If an
operation in the continuation fails, an A_Resume signal is returned to the generator, which then
executes the appropriate code. The generator retains state information in local variables. If the
generator is implemented as a C function, a pointer to the continuation is passed to it. Therefore,
a function implementing a generative operation need not know its success continuation until run
time.

Consider the operation i to j. This operation can be implemented in Icon with a procedure like

procedure To(i, j)
while i <= j do {

suspend i
i +:= 1

}
fail

end
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It can be implemented by an analogous C function similar to the following (for simplicity, C
ints are used here instead of Icon values).

int to(i, j, result, succ_cont)
int i, j;
int *result;
int (*succ_cont)();

{
int signal;

while (i <= j) {
*result = i;
signal = (*succ_cont)();
if (signal != A_Resume)

return signal;
++i;

}
return A_Resume;

}

There is no explicit failure label in this code, but it is possible to view the code as if an implicit
failure label occurs before the ++i.

The Icon expression

every write(1 to 3)

can be compiled into the following code (for simplicity, the write function has been translated
into printf and scoping issues for result have been ignored). Note that the every simply introduces
failure.

switch (to(1, 3, &result, sc)) { /* standard signal-handling code */
...

}

int sc() {
printf("%d\n", result);
return A_Resume;

}
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The final aspect of Icon expression evaluation that must be dealt with is that of bounded ex-
pressions. Once execution leaves a bounded expression, that expression cannot be resumed. At
this point, the state of the computation with respect to backtracking looks as it did when execution
entered the bounded expression. This means that, in generated code, where to go on failure (either
by branching to an explicit failure label or by returning an A_Resume signal) must be the same.
However, this failure action is only correct in the C function containing the start of the code for
the bounded expression. If a function suspended by calling a success continuation, execution is
no longer in that original C function. To accommodate this restoration of failure action, execution
must return to that original function.

This is accomplished by setting up a bounding label in the original C function and allocating a
signal that corresponds to the label. When the end of the bounded expression is reached, the signal
for the bounding label is returned. When the signal reaches the function containing the label, it is
converted into a goto. It can be determined statically which calls must convert which signals. Note
that if the bounded expression ends in the original C function, the “return signal” is already in the
context of the label. In this case, it is immediately transformed into a goto by the compiler, and
there is no real signal handling.

Consider the Icon expression

move(1);
...

The move function suspends and the C function implementing it needs a success continuation. In
this case, move is called in a bounded context, so the success continuation must return execution to
the function that called move. The continuation makes use of the fact that, like the C function for
to, the one for move only intercepts A_Resume signals and passes all other signals on to its caller.

This expression can be implemented with code similar to the following. There are two possible
signals that might be returned. move itself might produce an A_Resume signal or it might pass
along the bounding signal from the success continuation. Note that for a compound expression,
both the bounding label and the failure label are the same. In general, this is not true. In this
context, the result of move(1) is discarded. The variable trashcan receives this value; it is never
read.

switch (move(1, &trashcan, sc)) {
case 1:

goto L1;
case A_Resume:

goto L1;
}

L1: /* bounding label & failure label */
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...

int sc() {
return 1; /* bound signal */

}

Calling Conventions
This discussion has touched on the subject of calling conventions for run-time routines. In Icon,

it is, in general, impossible to know until run time what an invocation is invoking. This is handled
in the compiler with a standard calling convention for the C functions implementing operations and
procedures. This calling convention allows a C function to be called without knowing anything
about the operation it implements.

A function conforming to the standard calling convention has four parameters. These parame-
ters are, in order of appearance, the number of Icon arguments (a C int), a pointer to the beginning
of an array of descriptors holding the Icon arguments, a pointer to the descriptor used as the Icon
result location, and a success continuation to use for suspension. The function itself is responsi-
ble for any argument conversions including dereferencing, and for argument list adjustment. As
explained above, the function returns an integer signal. The function is allowed to return the sig-
nals A_Resume, A_Continue, and any signals returned by the success continuation. It may ignore
the success continuation if it does not suspend. The function may be passed a null continuation.
This indicates that the function will not be resumed. In this case, suspend acts like a simple re-
turn, passing back the signal A_Continue (this is not shown in the examples). The outline of a
standard-conforming function is

int function-name(nargs, args, result, succ_cont)
int nargs; dptr args; dptr result;
continuation succ_cont;
{

...
}

continuation is defined to be a pointer to a function taking no arguments and returning an integer.
Later sections of this dissertation describe the code generation process in more detail and de-

scribe optimizations of various parts of the code including parameter passing, continuations, signal
handling, and branching.
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Chapter 16

The Type Inferencing Model

Three sections of this dissertation are devoted to type inferencing: two chapters and an appendix.
This chapter develops a theoretical model of type inferencing for Icon. For simplicity, it ignores
some features of the language. This chapter presents intuitive arguments for the correctness of
the formal model. Chapter 19 describes the actual implementation of type inferencing in the Icon
compiler. The implementation handles the full Icon language and, for pragmatic reasons, differs
from the theoretical model in some details.

This chapter starts with the motivation for performing type inferencing. It then describes the
concept of abstract interpretation. This concept is used as a tool in this chapter to develop a
type inferencing system from Icon’s semantics. This chapter gives an intuitive presentation of this
development process before presenting the formal models of abstract semantics for Icon. The most
abstract of the formal models is the type inferencing system.

16.1 Motivation

Variables in the Icon programming language are untyped. That is, a variable may take on values
of different types as the execution of a program proceeds. In the following example, x contains a
string after the read (if the read succeeds), but it is then assigned an integer or real, provided the
string can be converted to a numeric type.

x := read()
if numeric(x) then x +:= 4

In general, it is impossible to know the type of an operator’s operands at translation time, so
some type checking must be done at run time. This type checking may result in type conversions,
run-time errors, or the selection among polymorphous operations (for example, the selection of
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integer versus real addition). In the Icon interpreter system, all operators check all of their operands
at run time. This incurs significant overhead.

Much of this run-time type checking is unnecessary. An examination of typical Icon programs
reveals that the types of most variables remain consistent throughout execution (except for the
initial null value) and that these types can often be determined by inspection. Consider

if x := read() then
y := x || ";"

Clearly both operands of || are strings so no checking or conversion is needed.
The goal of a type inferencing system is to determine what types variables may take on during

the execution of a program. It associates with each variable usage a set of the possible types of
values that variable might have when execution reaches the usage. This set may be a conservative
estimate (overestimate) of the actual set of possible types that a variable may take on because the
actual set may not be computable, or because an analysis to compute the actual set may be too
expensive. However, a good type inferencing system operating on realistic programs can determine
the exact set of types for most operands and the majority of these sets in fact contain single types,
which is the information needed to generate code without type checking. The Icon compiler has an
effective type inferencing system based on data flow analysis techniques.

16.2 Abstract Interpretation

Data flow analysis can be viewed as a form of abstract interpretation [.absintrp.]. This can be
particularly useful for understanding type inferencing. A “concrete” interpreter for a language
implements the standard (operational) semantics of the language, producing a sequence of states,
where a state consists of an execution point, bindings of program variables to values, and so forth.
An abstract interpreter does not implement the semantics, but rather computes information related
to the semantics. For example, an abstract interpretation may compute the sign of an arithmetic
expression rather than its value. Often it computes a “conservative” estimate for the property of
interest rather than computing exact information. Data flow analysis is simply a form of abstract
interpretation that is guaranteed to terminate. This chapter presents a sequence of approximations
to Icon semantics, culminating in one suitable for type inferencing.

Consider a simplified operational semantics for Icon, consisting only of program points (with
the current execution point maintained in a program counter) and variable bindings (maintained in
an environment). As an example of these semantics, consider the following program. Four program
points are annotated with numbers using comments (there are numerous intermediate points not
annotated).
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procedure main()
local s, n

# 1:
s := read()
# 2:
every n := 1 to 2 do {

# 3:
write(s[n])
}

# 4:
end

If the program is executed with an input of abc, the following states are included in the exe-
cution sequence (only the annotated points are listed). States are expressed in the form program
point: environment.

1: [s = null, n = null]
2: [s = "abc", n = null]
3: [s = "abc", n = 1]
3: [s = "abc", n = 2]
4: [s = "abc", n = 2]

It is customary to use the collecting semantics of a language as the first abstraction (approxima-
tion) to the standard semantics of the language. The collecting semantics of a program is defined
in Cousot and Cousot [.absintrp.] (they use the term static semantics) to be an association between
program points and the sets of environments that can occur at those points during all possible exe-
cutions of the program.

Once again, consider the previous example. In general, the input to the program is unknown, so
the read function is assumed to be capable of producing any string. Representing this general case,
the set of environments (once again showing only variable bindings) that can occur at point 3 is

[s = "", n = 1],
[s = "", n = 2],
[s = "a", n = 1],
[s = "a", n = 2],

. . .
[s = "abcd", n = 1],
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[s = "abcd", n = 2],
. . .

A type inferencing abstraction further approximates this information, producing an association
between each variable and a type at each program point. The actual type system chosen for this
abstraction must be based on the language and the use to which the information is put. The type
system used here is based on Icon’s run-time type system. For structure types, the system used
retains more information than a simple use of Icon’s type system would retain; this is explained in
detail later. For atomic types, Icon’s type system is used as is. For point 3 in the preceding example
the associations between variables and types are

[s = string, n = integer]

The type inferencing system presented in this chapter is best understood as the culmination
of a sequence of abstractions to the semantics of Icon, where each abstraction discards certain
information. For example, the collecting semantics discards sequencing information among states;
in the preceding program, collecting semantics determine that, at point 3, states may occur with n
equal to 1 and with n equal to 2, but does not determine the order in which they must occur. This
sequencing information is discarded because desired type information is a static property of the
program.

The first abstraction beyond the collecting semantics discards dynamic control flow information
for goal directed evaluation. The second abstraction collects, for each variable, the value associated
with the variable in each environment. It discards information such as, “x has the value 3 when y
has the value 7”, replacing it with “x may have the value 3 sometime and y may have the value 7
sometime.”. It effectively decouples associations between variables.

This second abstraction associates a set of values with a variable, but this set may be any of an
infinite number of sets and it may contain an infinite number of values. In general, this precludes
either a finite computation of the sets or a finite representation of them. The third abstraction defines
a type system that has a finite representation. This abstraction discards information by increasing
the set associated with a variable (that is, making the set less precise) until it matches a type. This
third model can be implemented with standard iterative data flow analysis techniques.

This chapter assumes that an Icon program consists of a single procedure and that all invoca-
tions are to built-in functions. It also assumes that there are no co-expressions beyond the main
co-expression. See Chapter 19 for information on how to extend the abstractions to multiple pro-
cedures and multiple co-expressions.
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16.3 Collecting Semantics

The collecting semantics of an Icon program is defined in terms of a flow graph of the program. A
flow graph is a directed graph used to represent the flow of control in a program. Nodes in the graph
represent the executable primitives in the program. An edge exists from node A to node B if it is
possible for execution to pass directly from the primitive represented by node A to the primitive
represented by node B. Cousot and Cousot [.absintrp.] prove that the collecting semantics of a
program can be represented as the least fixed point of a set of equations defined over the edges of
the program’s flow graph. These equations operate on sets of environments.

For an example of a flow graph, consider the Icon program

procedure main()
every write(1 to 3)

end

The diagram below on the left shows the abstract syntax tree for this procedure, including the
implicit fail at the end of the procedure. The invoke node in the syntax tree represents procedure
invocation. Its first argument must evaluate to the procedure to be invoked; in this case the first
argument is the global variable write. The rest of the arguments are used as the arguments to the
procedure. pfail represents procedure failure (as opposed to expression failure within a procedure).
Nodes corresponding to operations that produce values are numbered for purposes explained below.

A flow graph can be derived from the syntax tree. This is shown on the right.

procedure main

;

every

invoke1

write2 to3

14 35

pfail

procedure main

write2

14

35

to3

invoke1 pfail

Figure 16.1: Syntax tree and flow graph for a simple procedure

The node labeled procedure main is the start node for the procedure; it performs any necessary
initializations to establish the execution environment for the procedure. The edge from invoke to to
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is a resumption path induced by the control structure every. The path from to to pfail is the failure
path for to. It is a forward execution path rather than a resumption path because the compound
expression (indicated by ;) limits backtracking out of its left-hand sub-expression. Chapter 19
describes how to determine the edges of the flow graph for an Icon program.

Both the standard semantics and the abstract semantics must deal with the intermediate results
of expression evaluation. A temporary-variable model is used because it is more convenient for this
analysis than a stack model. This decision is unrelated to the use of a temporary-variable model in
the compiler. This analysis uses a trivial assignment of temporary variables to intermediate results.
Temporary variables are not reused. Each node that produces a result is assigned some temporary
variable ri in the environment. Assuming that temporary variables are assigned to the example
according to the node numbering, the to operation has the effect of

r3 := r4 to r5

Expressions that represent alternate computations must be assigned the same temporary variable,
as in the following example for the subexpression x := ("a" | "b"). The syntax tree below on the left
and the flow graph are shown on the right.

:=1

x2 alt

"a"3 "b"3 :=1

"a"3

x2

"b"3

Figure 16.2: syntax tree and flow graph for x := ("a" | "b")

The if and case control structures are handled similarly. In addition to temporary variables
for intermediate results, some generators may need additional temporary variables to hold internal
states during suspension. It is easy to devise a scheme to allocate them where they are needed;
details are not presented here. The syntax tree is kept during abstract interpretation and used to
determine the temporary variables associated with an operation and its operands.

The equations that determine the collecting semantics of the program are derived directly from
the standard semantics of the language. The set of environments on an edge of the flow graph is
related to the sets of environments on edges coming into the node at the head of this edge. This
relationship is derived by applying the meaning of the node (in the standard semantics) to each of
the incoming environments.
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It requires a rather complex environment to capture the full operational semantics (and collect-
ing semantics) of a language like Icon. For example, the environment needs to include a represen-
tation of the external file system. However, later abstractions only use the fact that the function
read produces strings. This discussion assumes that it is possible to represent the file system in
the environment, but does not give a representation. Other complexities of the environment are
discussed later. For the moment, examples only show the bindings of variables to unstructured
(atomic) values.

As an example of environments associated with the edges of a flow graph, consider the assign-
ment at the end of the following code fragment. The comments in the if expression are assertions
that are assumed to hold at those points in the example.

if x = 7 then {
...
# x is 7 and y is 3
}

else {
...
# (x is null and y is 1) or (x is "abc" and y is 2)
}

x := y + 2

Because of the preceding if expression, there are two paths reaching the assignment. The dia-
gram below shows the flow graph and accompanying environments for the expression; the diagram
ignores the fact that the assignment expression requires several primitive operations to implement.

x := y + 2

{ [x=null,y=1] , [x="abc",y=2] } { [x=7,y=3] }

{ [x=3,y=1] , [x=4,y=2] , [x=5,y=3] }

Figure 16.3: A flow graph for x := y + 2

For a conditional expression, an incoming environment is propagated to the path that it would
cause execution to take in the standard semantics. This requires distinguishing the paths to be taken
on failure (backtracking paths) from those to be taken on success. The following diagram shows an
example of this.
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x < y

{ [x=1,y=2] , [x=1,y=1] , [x=3,y=100] }

{ [x=1,y=2] , [x=3,y=100] }

success

{ [x=1,y=1] }

failure

Figure 16.4: A flow graph for a conditional expression

In general there may be several possible backtracking paths. The environments in the standard
and collecting semantics need to include a stack of current backtracking points and control flow
information, and the flow graph needs instructions to maintain this stack. The Icon interpreter
system described in Part I is an example of how this information can be maintained. However,
the first abstraction to the collecting semantics eliminates the need for this information, so the
information is not presented in detail here.

Model 1: Eliminating Control Flow Information

The first abstraction involves taking the union of the environments propagated along all the failure
paths from a node in the collecting semantics and propagating that union along each of the failure
paths in the new abstraction. This abstraction eliminates the stack of backtracking points from the
environment.

A more formal definition for this model requires taking a closer look at Icon data values, es-
pecially those values with internal structure. In order to handle Icon data objects with pointer
semantics, an environment needs more than variable bindings. This fact is important to type in-
ferencing. The problem is handled by including two components in the environment. The first is
the store, which maps variables to values. Variables include named variables, temporary variables,
and structure variables. Named variables correspond to program identifiers. Temporary variables
hold intermediate results as discussed above. Structure variables are elements of structures such as
lists. Note that the sets of named variables and temporary variables are each finite (based on the
assumption that a program consists of a single non-recursive procedure; as mentioned earlier, this
assumption is removed in Chapter 19), but for some non-terminating programs, the set of structure
variables may be infinite. Program variables include both named variables and structure variables
but not temporary variables.

Values include atomic data values such as integers, csets, and strings. They also include pointers
that reference objects with pointer semantics. In addition to the values just described, temporary
variables may contain references to program variables. These variable references may be used
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by assignments to update the store or they may be dereferenced by other operations to obtain the
values stored in the variables.

The second part of the environment is the heap. It maps pointers to the corresponding data
objects (this differs from the heap in the Icon implementation in that that heap also contains some
data objects that do not have pointer semantics). For simplicity, the only data type with pointer
semantics included in this discussion is the list. A list is a partial mapping from integers to variables.
Representing other data types with pointer semantics is straightforward; this is discussed in Chapter
19.

The first abstraction is called Model 1. The notations envir[n], store[n], and heap[n] refer to the
sets of possible environments, stores, and heaps respectively in model n. For example, envir[1] is
the set of possible environments in the first abstraction. In the following set of definitions, X × Y
is the set of ordered pairs where the first value in the pair is from X and the second value is from
Y . X → Y is the set of partial functions from X to Y . The definition of the set of possible
environments for model 1 is

envir[1] = store[1] × heap[1]

store[1] = variables→ values
values = integers ∪ strings ∪ . . .∪ pointers ∪ variables
heap[1] = pointers→ lists, where lists = integers→ variables

For example, the expression
a := ["abc"]

creates a list of one element whose value is the string abc and assigns the list to the variable a. Let
p1 be the pointer to the list and let v1 be the (anonymous) variable within the list. The resulting
environment, e ∈ envir[1], might be

e = (s, h), where s ∈ store[1], h ∈ heap[1]

s(a) = p1

s(v1) = "abc"

h(p1) = L1, where L1 ∈ lists

L1(1) = v1

If the statement
a[1] := "xyz"

is executed, the subscripting operation dereferences a producing p1, then uses the heap to find L1,
which it applies to 1 to produce the result v1. The only change in the environment at this point is to
temporary variables that are not shown. The assignment then updates the store, producing
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e1 = (s1, h)
s1(a)= p1

s1(v1) = "xyz"

Assignment does not change the heap. On the other hand, the expression

put(a, "xyz")

adds the string xyz to the end of the list; if it is executed in the environment e, it alters the heap
along with adding a new variable to the store.

e1 = (s1, h1)
s1(a) = p1

s1(v1) = "abc"
s1(v2) = "xyz"
h1(p1) = L2

L2(1) = v1

L2(2) = v2

If a formal model were developed for the collecting semantics, it would have an environment
similar to the one in Model 1. However, it would need a third component with which to represent
the backtracking stack.

Model 2: Decoupling Variables

The next approximation to Icon semantics, Model 2, takes all the values that a variable might have
at a given program point and gathers them together. In general, a variable may have the same value
in many environments, so this, in some sense, reduces the amount of space required to store the
information (though the space may still be unbounded). The “cost” of this reduction of storage is
that any information about relationship of values between variables is lost.

Model 2 is also defined in terms of environments, stores, and heaps, although they are different
from those of Model 1. A store in Model 2 maps sets of variables to sets of values; each resulting
set contains the values associated with the corresponding variables in environments in Model 1.
Similarly, a heap in Model 2 maps sets of pointers to sets of lists; each of these sets contains the
lists associated with the corresponding pointers in environments in Model 1. An environment in
Model 2 contains a store and a heap, but unlike in Model 1, there is only one of these environments
associated with each program point. The environment is constructed so that it effectively “contains”
the environments in the set associated with the point in Model 1.

The definition of Model 2 is
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envir[2] = store[2]× heap[2]

store[2] = 2variables → 2values

heap[2] = 2pointers → 2lists

In Model 1, operations produce elements from the set values. In Model 2, operations produce
subsets of this set. It is in this model that read is taken to produce the set of all strings and that the
existence of an external file system can be ignored.

Suppose a program point is annotated with the set containing the following two environments
from Model 1.

e1, e2 ∈ envir[1]

e1 = (s1, h1)
s1(x) = 1
s1(y) = p1

h1(p1) = L1

e2 = (s2, h2)
s2(x) = 2
s2(y) = p1

h2(p1) = L2

Under Model 2 the program point is annotated with the single environment ê∈ envir[2], where

ê = (ŝ, ĥ)
ŝ({x}) = {1, 2}
ŝ({y}) = {p1}
ŝ({x, y}) = {1, 2, p1}
ĥ({p1}) = {L1, L2}

Note that a store in Model 2 is distributive over union. That is,
ŝ(X ∪ Y ) = ŝ(X) ∪ ŝ(Y )

so listing the result of ŝ({x, y}) is redundant. A heap in Model 2 also is distributive over union.
In going to Model 2 information is lost. In the last example, the fact that x = 1 is paired with

p1 = L1 and x = 2 is paired with p1 = L2 is not represented in Model 2.
Just as read is extended to produce a set of values, so are all other operations. These "extended"

operations are then used to set up the equations whose solution formally defines Model 2. This
extension is straightforward. For example, the result of applying a unary operator to a set is the set
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obtained by applying the operator to each of the elements in the operand. The result of applying a
binary operator to two sets is the set obtained by applying the operator to all pairs of elements from
the two operands. Operations with more operands are treated similarly. For example

{1, 3, 5}+ {2, 4} = {1 + 2, 1 + 4, 3 + 2, 3 + 4, 5 + 2, 5 + 4}
= {3, 5, 5, 7, 7, 9}
= {3, 5, 7, 9}

The loss of information mentioned above affects the calculation of environments in Model 2.
Suppose the addition in the last example is from

z := x + y

and that Model 1 has the following three environments at the point before the calculation

[x = 1, y = 2, z = 0]
[x = 3, y = 2, z = 0]
[x = 5, y = 4, z = 0]

After the calculation the three environments will be

[x = 1, y = 2, z = 3]
[x = 3, y = 2, z = 5]
[x = 5, y = 4, z = 9]

If these latter three environments are translated into an environment of Model 2, the result is

[x = {1, 3, 5}, y = {2, 4}, z = {3, 5, 9}]

However, when doing the computation using the semantics of + in Model 2, the value for z is
{3, 5, 7, 9}. The solution to the equations in Model 2 overestimates (that is, gives a conservative
estimate for) the values obtained by computing a solution using Model 1 and translating it into the
domain of Model 2.

Consider the following code with respect to the semantics of assignment in Model 2. (Assume
that the code is executed once, so only one list is created.)
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x := [10, 20]
i := if read() then 1 else 2
x[i] := 30

After the first two assignments, the store maps x to a set containing one pointer and maps i to a
set containing 1 and 2. The third assignment is not as straightforward. Its left operand evaluates to
two variables; the most that can be said about one of these variables after the assignment is that it
might have been assigned 30. If (s, h) is the environment after the third assignment then

s({x}) = {p1}
s({i}) = {1, 2}
s({v1}) = {10, 30}
s({v2}) = {20, 30}

h({p1}) = {L1}

L1(1) = v1

L1(2) = v2

Clearly all assignments could be treated as weak updates [.pntstr.], where a weak update is
an update that may or may not take place. However, this would involve discarding too much
information; assignments would only add to the values associated with variables and not replace
the values. Therefore assignments where the left hand side evaluates to a set containing a single
variable are treated as special cases. These are implemented as strong updates.

Model 3: A Finite Type System

The environments in Model 2 can contain infinite amounts of information, as in the program

x := 1
repeat x +:= 1

where the set of values associated with x in the loop consists of all the counting numbers. Because
equations in Model 2 can involve arbitrary arithmetic, no algorithm can find the least fixed point of
an arbitrary set of these equations.

The final step is to impose a finitely representable type system on values. A type is a (possibly
infinite) set of values. The type system presented here includes three classifications of basic types.
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The first classification consists of the Icon types without pointer semantics: integers, strings, csets,
etc. The second classification groups pointers together according to the lexical point of their cre-
ation. This is similar to the method used to handle recursive data structures in Jones and Muchnick
[.analrcsv.]. Consider the code

every insert(x, [1 to 5])

If this code is executed once, five lists are created, but they are all created at the same point in
the program, so they all belong to the same type. The intuition behind this choice of types is that
structures created at the same point in a program are likely to have components of the same type,
while structures created at different points in a program may have components of different types.

The third classification of basic types handles variable references. Each named variable and
temporary variable is given a type to itself. Therefore, if a is a named variable, {a} is a type.
Structure variables are grouped into types according to the program point where the pointer to the
structure is created. This is not necessarily the point where the variable is created; in the following
code, a pointer to a list is created at one program point, but variables are added to the list at different
points

x := []
push(x, 1)
push(x ,2)

References to these variables are grouped into a type associated with the program point for [],
not the point for the corresponding push.

If a program contains k non-structure variables and there are n locations where pointers can be
created, then the basic types for the program are integer, string, ..., P1, ..., Pn, V1, ..., Vn, {v1}, ...,
{vk} where Pi is the pointer type created at location i, Vi is the variable type associated with Pi, and
vi is a named variable or a temporary variable. Because programs are lexically finite they each have
a finite number of basic types. The set of all types for a program is the smallest set that is closed
under union and contains the empty set along with the basic types:

types = {{}, integers, strings,..., (integers ∪ strings),..., (integers ∪ strings ∪ ... ∪ {vk})}

Model 3 replaces the arbitrary sets of values of Model 2 by types. This replacement reduces the
precision of the information, but allows for a finite representation and allows the information to be
computed in finite time.

In Model 3, both the store and the heap map types to types. This store is referred to as the
type store. The domain of type store is variable types, that is, those types whose only values are
variable references. Similarly, the domain of the heap is pointer types. Its range is the set types
containing only structure variables. A set of values from Model 2 is converted to a type in Model 3
by mapping that set to the smallest type containing it. For example, the set
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{1, 4, 5, "23", "0"}
is mapped to

integer ∪ string

The definition of envir[3] is

envir[3] = store[3]× heap[3]

store[3] = variable-types→ types
heap[3] = pointer-types→ structure-variable-types
types ⊆ 2values

variable-types ⊆ types
structure-variable-types ⊆ variable-types
pointer-types ⊆ types

There is exactly one variable type for each pointer type in this model. The heap simply consists
of this one-to-one mapping; the heap is of the form

h( Pi ) = Vi

This mapping is invariant over a given program. Therefore, the type equations for a program
can be defined over store[3] rather than envir[3] with the heap embedded within the type equations.

Suppose an environment from Model 2 is

e ∈ envir[2]

e = (s, h)

s({a}) = {p1, p2}
s({v1}) = {1, 2}
s({v2}) = {1}
s({v3}) = {12.03}

h({p1}) = {L1, L2}
h({p2}) = {L3}

L1(1) = v1

L2(1) = v1

L2(2) = v2

L3(1) = v3
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Suppose the pointers p1 and p2 are both created at program point 1. Then the associated pointer
type is P1 and the associated variable type is V1. The corresponding environment in Model 3 is

ê ∈ envir[3]

ê = (ŝ, ĥ)
ŝ({a}) = P1

ŝ(V1) = integer ∪ real
ĥ(P1) = V1

The collecting semantics of a program establishes a set of (possibly) recursive equations be-
tween the sets of environments on the edges of the program’s flow graph. The collecting semantics
of the program is the least fixed point of these equations in which the set on the edge entering the
start state contains all possible initial environments. Similarly, type inferencing establishes a set of
recursive equations between the type stores on the edges of the flow graph. The least fixed point
of these type inferencing equations is computable using iterative methods. This is discussed in
Chapter 19. The fact that these equations have solutions is due to the fact that the equations in the
collecting semantics have a solution and the fact the each abstraction maintains the “structure” of
the problem, simply discarding some details.

Chapter 19 also extends type inferencing to handle the entire Icon language. Chapter 22 uses
the information from type inferencing to optimize the generated code.



Chapter 17

Liveness Analysis of Intermediate Values

The maintenance of intermediate values during expression evaluation in the Icon programming
language is more complicated than it is for conventional languages such as C and Pascal. O’Bagy
explains this in her dissertation [.tr88-31.]:

“Generators prolong the lifetime of temporary values. For example, in
i = find(s1,s2)

the operands of the comparison operation cannot be discarded when find produces its
result. If find is resumed, the comparison is performed again with subsequent results
from find(s1,s2), and the left operand must still be available.”

In some implementation models, it is equally important that the operands of find still be available if
that function is resumed (this depends on whether the operand locations are used during resumption
or whether all needed values are saved in the local state of the function).

As noted in Chapter 14, a stack-based model handles the lifetime problem dynamically. How-
ever, a temporary-variable model like the one used in this compiler requires knowledge at compile-
time of the lifetime of intermediate values. In a straightforward implementation of conventional
languages, liveness analysis of intermediate values is trivial: an intermediate value is computed in
one place in the generated code, is used in one place, and is live in the contiguous region between
the computation and the use. In such languages, determining the lifetime of intermediate values
only becomes complicated when certain optimizations are performed, such as code motion and
common subexpression elimination across basic blocks [.dragonbk,progflw.]. This is not true in
Icon. In the presence of goal-directed evaluation, the lifetime of an intermediate value can extend
beyond the point of use. Even in a straightforward implementation, liveness analysis is not trivial.

In its most general form, needed in the presence of the optimizations mentioned above, liveness
analysis requires iterative methods. However, goal-directed evaluation imposes enough structure on
the liveness problem that, at least in the absence of optimizations, iterative methods are not needed
to solve it. This chapter presents a simple and accurate method for computing liveness information
for intermediate values in Icon. The analysis is formalized in an attribute grammar.

287
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17.1 Implicit Loops

Goal-directed evaluation extends the lifetime of intermediate values by creating implicit loops
within an expression. In O’Bagy’s example, the start of the loop is the generator find and the
end of the loop is the comparison that may fail. An intermediate value may be used within such a
loop, but if its value is computed before the loop is entered, it is not recomputed on each iteration
and the temporary variable must not be reused until the loop is exited.

The following fragment of C code contains a loop and is therefore analogous to code generated
for goal-directed evaluation. It is used to demonstrate the liveness information needed by a tem-
porary variable allocator. In the example, v1 through v4 represent intermediate values that must be
assigned to program variables.

v1 = f1();
while (--v1) {

v2 = f2();
v3 = v1 + v2;
f3(v3);
}

v4 = 8;

Separate variables must be allocated for v1 and v2 because they are both needed for the addition.
Here, x is chosen for v1 and y is chosen for v2.

x = f1();
while (--x) {

y = f2();
v3 = x + y;
f3(v3);
}

v4 = 8;

x cannot be used to hold v3, because x is needed in subsequent iterations of the loop. Its lifetime
must extend through the end of the loop. y, on the other hand, can be used because it is recomputed
in subsequent iterations. Either variable may be used to hold v4.

x = f1();
while (--x) {

y = f2();
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y = x + y;
f3(y);
}

x = 8;

Before temporary variables can be allocated, the extent of the loops created by goal-directed
evaluation must be estimated. Suppose O’Bagy’s example

i = find(s1, s2)

appears in the following context

procedure p(s1, s2, i)
if i = find(s1, s2) then return i + *s1
fail

end

The simplest and most pessimistic analysis assumes that a loop can appear anywhere within
the procedure, requiring the conclusion that an intermediate value in the expression may live to
the end of the procedure. Christopher’s simple analysis [.tccompile.] notices that the expression
appears within the control clause of an if expression. This is a bounded context; implicit loops
cannot extend beyond the end of the control clause. His allocation scheme reuses, in subsequent
expressions, temporary variables used in this control clause. However, it does not determine when
temporary variables can be reused within the control clause itself.

The analysis presented here locates the operations within the expression that can fail and those
that can generate results. It uses this information to accurately determine the loops within the
expression and the intermediate values whose lifetimes are extended by those loops.

17.2 Liveness Analysis

It is instructive to look at a specific example where intermediate values must be retained beyond (in
a lexical sense) the point of their use. The following expression employs goal-directed evaluation
to conditionally write sentences in the data structure x to an output file. Suppose f is either a file or
null. If f is a file, the sentences are written to it; if f is null, the sentences are not written.

every write(\f, !x, ".")

In order to avoid the complications of control structures at this point in the discussion, the following
equivalent expression is used in the analysis:

write(\f, !x, ".") & &fail
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(
v1 := write,
v2 := f,
v3 := \v2,
v4 := x,
v5 := !v4,
v6 := ".",
v7 := v1(v3,v5,v6),
v8 := &fail

)

Figure 17.1: The lifetime of temporary variables (with backtracking)

this expression can be converted into a sequence of primitive operations producing intermediate
values (v1, v2, ...). This is shown in figure 17.1. For convenience, the operations are expressed in
Icon, except that the assignments do not dereference their right-hand operands.

Whether or not the program variables and constants are actually placed in temporary vari-
ables depends on the machine model, implementation conventions, and what optimizations are
performed. Clearly a temporary variable is not needed for &fail. However, temporary variables are
needed if the subexpressions are more complex; intermediate values are shown for all subexpres-
sions for explanatory purposes.

When &fail is executed, the ! operation is resumed. This creates an implicit loop from the !
to &fail, as shown by the arrow in the above diagram. The question is: What intermediate values
must be retained up to &fail? A more instructive way to phrase the question is: After &fail is
executed, what intermediate values could be reused without being recomputed? From the sequence
of primitive operations, it is clear that the reused values include v1 and v3, and, if the element
generation operator, !, references its argument after resumption, then the reused values include v4.
v2 is not used within the loop, v5 and v6 are recomputed within the loop, and v7 and v8 are not
used. The lines in the diagram to the left of the code indicate the lifetime of the intermediate values.
The dotted portion of each line represents the region of the lifetime beyond what would exist in the
absence of backtracking.

Liveness information could be computed by making the implicit loops explicit then performing
a standard liveness analysis in the form of a global data flow analysis. That is unnecessarily expen-
sive. There is enough structure in this particular liveness problem that it can be solved during the
simple analysis required to locate the implicit loops caused by goal-directed evaluation.

Several concepts are needed to describe analyses involving execution order within Icon expres-
sions. Forward execution order is the order in which operations would be executed at run time in
the absence of goal-directed evaluation and explicit loops. Goal-directed evaluation involves both
failure and the resumption of suspended generators. The control clause of an if-then-else expression
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may fail, but instead of resuming a suspending generator, it causes the else clause to be executed.
This failure results in forward execution order. Forward execution order imposes a partial ordering
on operations. It produces no ordering between the then and the else clauses of an if expression.
Backtracking order is the reverse of forward execution order. This is due to the LIFO resumption
of suspended generators. The backward flow of control caused by looping control structures does
not contribute to this liveness analysis (intermediate results used within a looping control structure
are also computed within the loop), but is dealt with in later chapters. The every control structure
is generally viewed as a looping control structure. However, it simply introduces failure. Looping
only occurs when it is used with a generative control clause, in which case the looping is treated
the same as goal-directed evaluation.

A notation that emphasizes intermediate values, subexpressions, and execution order is helpful
for understanding how liveness is computed. Both postfix notation and syntax trees are inadequate.
A postfix notation is good for showing execution order, but tends to obscure subexpressions. The
syntax tree of an expression shows subexpressions, but execution order must be expressed in terms
of a tree walk. In both representations, intermediate values are implicit. For this discussion, an
intermediate representation is used. A subexpression is represented as a list of explicit intermediate
values followed by the operation that uses them, all enclosed in ovals. Below each intermediate
value is the subexpression that computes it. This representation is referred to as a postfix tree. The
postfix tree for the example above is:

v7 v8

v1 v3 v5 v6

v2 v4

invoke

write

f x

&

&fail

\ ! "."

Figure 17.2: A postfix tree for write(\f, !x, ".") & &fail

In this notation, the forward execution order of operations (which includes constants and ref-
erences to program variables) is left-to-right and the backtracking order is right-to-left. In this
example, the backtracking order is &fail, invoke, ".", !, x, \, f, and write.

As explained above, the use of an intermediate value must appear in an implicit loop for the
value to have an extended lifetime. Two events are needed to create such a loop. First, an operation
must fail, initiating backtracking. Second, an operation must be resumed, causing execution to
proceed forward again. This analysis computes the maximum lifetime of intermediate values in the
expression, so it only needs to compute the rightmost operation (within a bounded expression) that
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can fail. This represents the end of the farthest reaching loop. Once execution proceeds beyond
this point, no intermediate value can be reused.

The intermediate values of a subexpression are used at the end of the subexpression. For ex-
ample, invoke uses the intermediate values v1, v3, v5, and v6; the following figure shows these
intermediate results and the operation in isolation.

v1 v3 v5 v6 invoke

Figure 17.3: The temporary values used by invoke

In order for these uses to be in a loop, backtracking must be initiated from outside; that is,
beyond the subexpression (in the example, only &fail and & are beyond the subexpression).

In addition, for an intermediate value to have an extended lifetime, the beginning of the loop
must start after the intermediate value is computed. Two conditions may create the beginning of a
loop. First, the operation itself may be resumed. In this case, execution continues forward within
the operation. It may reuse any of its operands and none of them are recomputed. The operation
does not have to actually generate more results. For example, reversible swap (the operator <–>)
can be resumed to reuse both of its operands, but it does not generate another result. Whether
an operation actually reuses its operands on resumption depends on its implementation. In the
Icon compiler, operations implemented with a C function using the standard calling conventions
always use copies of operands on resumption, but implementations tailored to a particular use often
reference operand locations on resumption. Liveness analysis is presented here as if all operations
reuse their operands on resumption. In the actual implementation, liveness analysis computes a
separate lifetime for values used internally by operations and the code generator decides whether
this lifetime applies to operands. This internal lifetime may also be used when allocating tended
descriptors for variables declared local to the in-line code for an operation. The behavior of the
temporary-variable model presented in this dissertation can be compared with one developed by
Nilsen and Martinek [.martinek.]; it also relies on the liveness analysis described in this chapter.

The second way to create the beginning of a loop is for a subexpression to generate results. Ex-
ecution continues forward again and any intermediate values to the left of the generative subexpres-
sion may be reused without being recomputed. Remember, backtracking is initiated from outside
the expression. Suppose an expression that can fail is associated with v6, in the previous figure.
This creates a loop with the generator associated with v5. However, this particular loop does not
include invoke and does not contribute to the reuse of v1 or v3.

A resumable operation and generative subexpressions are all resumption points within an ex-
pression. A simple rule can be used to determine which intermediate values of an expression have
extended lifetimes: If the expression can be resumed, the intermediate values with extended life-
times consist of those to the left of the rightmost resumption point of the expression. This rule refers
to the ``top level’’ intermediate values. The rule must be applied recursively to subexpressions to
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determine the lifetime of lower level intermediate values.
It sometimes may be necessary to make conservative estimates of what can fail and of resump-

tion points (for liveness analysis, it is conservative to overestimate what can fail or be resumed).
For example, invocation may or may not be resumable, depending on what is being invoked and, in
general, it cannot be known until run time what is being invoked (for the purposes of this example
analysis, it is assumed that the variable write is not changed anywhere in the program).

In the example, the rightmost operation that can fail is &fail. Resumption points are ! and the
subexpressions corresponding to the intermediate values v5 and v7.

Once the resumption points have been identified, the rule for determining extended lifetimes
can be applied. If there are no resumption points in an expression, no intermediate values in that
expression can be reused. Applying this rule to the postfix tree above yields v1, v3, and v4 as the
intermediate values that have extended lifetimes.

Similar techniques can be used for liveness analysis of Prolog programs, where goal-directed
evaluation also creates implicit loops. One difference is that a Prolog clause is a linear sequence of
calls. It does not need to be “linearized” by constructing a postfix tree. Another difference is that
all intermediate values in Prolog programs are stored in explicit variables. A Prolog variable has a
lifetime that extends to the right of its last use if an implicit loops starts after the variable’s first use
and ends after the variable’s last use.

17.3 An Attribute Grammar

To cast this approach as an attribute grammar, an expression should be thought of in terms of
an abstract syntax tree. The transformation from a postfix tree to a syntax tree is trivial. It is
accomplished by deleting the explicit intermediate values. A syntax tree for the example is:

&

invoke

write \

f

!

x

"."

&fail

Figure 17.4: A syntax tree for write(\f, !x, ".") & &fail

Several interpretations can be given to a node in a syntax tree. A node can be viewed as repre-
senting either an operation, an entire subexpression, or an intermediate value.
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This analysis associates four attributes with each node (this ignores attributes needed to handle
break expressions). The goal of the analysis is to produce the lifetime attribute. The other three
attributes are used to propagate information needed to compute the lifetime.

• resumer is either the rightmost operation (represented as a node) that can initiate backtrack-
ing into the subexpression or it is null if the subexpression cannot be resumed.

• failer is related to resumer. It is the rightmost operation that can initiate backtracking that can
continue past the subexpression. It is the same as resumer, unless the subexpression itself
contains the rightmost operation that can fail.

item gen is a boolean attribute. It is true if the subexpression can generate multiple results if
resumed.

• lifetime is the operation beyond which the intermediate value is no longer needed. It is either
the parent node, the resumer of the parent node, or null. The lifetime is the parent node if the
value is never reused after execution leaves the parent operation. The lifetime is the resumer
of the parent if the parent operation or a generative sibling to the right can be resumed. A
lifetime of null is used to indicate that the intermediate value is never used. For example, the
value of the control clause of an if expression is never used.

Attribute computations are associated with productions in the grammar. The attribute compu-
tations for failer and gen are always for the non-terminal on the left-hand side of the production.
These values are then used at the parent production; they are effectively passed up the syntax tree.
The computations for resumer and lifetime are always for the attributes of non-terminals on the
right-hand side of the production. resumer is then used at the productions defining these non-
terminals; it is effectively passed down the syntax tree. lifetime is usually saved just for the code
generator, but it is sometimes used by child nodes.

17.4 Primary Expressions

Variables, literals, and keywords are primary expressions. They have no subexpressions, so their
productions contain no computations for resumer or lifetime. The attribute computations for a
literal follow. A literal itself cannot fail, so backtracking only passes beyond it if the backtracking
was initiated before (to the right of) it. A literal cannot generate multiple results.

expr ::= literal {
expr.failer := expr.resumer
expr.gen := false

}
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Another example of a primary expression is the keyword &fail. Execution cannot continue past
&fail, so it must be the rightmost operation within its bounded expression that can fail. A pre-
existing attribute, node, is assumed to exist for every symbol in the grammar. It is the node in the
syntax tree that corresponds to the symbol.

expr ::= &fail {
expr.failer := expr.node
expr.gen := false

}

17.5 Operations with Subexpressions

Addition provides an example of the attribute computations involving subexpressions. The follow-
ing diagram shows how resumer, failer, and gen information would be passed through the postfix
tree.

gen

gen gen

v1 v2 +

expr1 expr2
resumer

resumer

resumer failer

failer

Figure 17.5: Passing attribute information through a postfix tree

This information would then be used to compute lifetime information for v1 and v2. Figure 17.6
shows how the attribute information is actually passed through the syntax tree.
The lifetime attributes are computed for the roots of the subtrees for expr1 and expr2.

The details of the attribute computations depend, in part, on the characteristics of the individual
operation. Addition does not fail, so the rightmost resumer, if there is one, of expr2 is the rightmost
resumer of the entire expression. The rightmost resumer of expr1 is the rightmost operation that
can initiate backtracking that continues past expr2. Addition does not suspend, so the lifetime of
the value produced by expr2 only extends through the operation (that is, it always is recomputed
in the presence of goal-directed evaluation). If expr2 is a generator, then the result of expr1 must
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+

expr1 expr2
failer

resumerfailer

resumer
failerresumer

gen

gengen

Figure 17.6: Passing attribute information through a syntax tree

be retained for as long as expr2 might be resumed. Otherwise, it need only be retained until the
addition is performed. expr1 is the first thing executed in the expression, so its failer is the failer for
the entire expression. The expression is a generator if either expr1 or expr2 is a generator (note that
the operation | is logical or, not Icon’s alternation control structure):

expr ::= expr1 + expr2 {
expr2.resumer := expr.resumer
expr2.lifetime := expr.node
expr1.resumer := expr2.failer
if expr2.gen & (expr.resumer 6= null) then

expr1.lifetime := expr.resumer
else

expr1.lifetime := expr.node
expr.failer := expr1.failer
expr.gen := (expr1.gen | expr2.gen)
}

/expr provides an example of an operation that can fail. If there is no rightmost resumer of the
entire expression, it is the rightmost resumer of the operand. The lifetime of the operand is simply
the operation, by the same argument used for expr2 of addition. The computation of failer is also
analogous to that of addition. The expression is a generator if the operand is a generator:

expr ::= /expr1 {
if expr.resumer = null then

expr1.resumer := expr.node
else

expr1.resumer := expr.resumer
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expr1.lifetime := expr.node
expr.failer := expr1.failer
expr.gen := expr1.gen
}

!expr differs from /expr in that it can generate multiple results. If it can be resumed, the result
of the operand must be retained through the rightmost resumer:

expr ::= !expr1 {
if expr.resumer = null then {

expr1.resumer := expr.node
expr1.lifetime := expr.node
}

else {
expr1.resumer := expr.resumer
expr1.lifetime := expr.resumer
}

expr.failer := expr1.failer
expr.gen := true
}

17.6 Control Structures

Other operations follow the general pattern of the ones presented above. Control structures, on the
other hand, require unique attribute computations. In particular, several control structures bound
subexpressions, limiting backtracking. For example, not bounds its argument and discards the
value. If it has no resumer, then it is the rightmost operation that can fail. The expression is not a
generator:

expr ::= not expr1 {
expr1.resumer := null
expr1.lifetime := null
if expr.resumer = null then

expr.failer := expr.node
else

expr.failer := expr.resumer
expr.gen := false
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}

expr1 ; expr2 bounds expr1 and discards the result. Because the result of expr2 is the result of the
entire expression, the code generator makes their result locations synonymous. This is reflected in
the lifetime computations. Indeed, all the attributes of expr2 and those of the expression as a whole
are the same:

expr ::= expr1 ; expr2 {
expr1.resumer := null
expr1.lifetime := null
expr2.resumer := expr.resumer
expr2.lifetime := expr.lifetime
expr.failer := expr2.failer
expr.gen := expr2.gen
}

A reasonable implementation of alternation places the result of each subexpression into the
same location: the location associated with the expression as a whole. This is reflected in the
lifetime computations. The resumer of the entire expression is also the resumer of each subexpres-
sion. Backtracking out of the entire expression occurs when backtracking out of expr2 occurs. This
expression is a generator:

expr ::= expr1 | expr2 {
expr2.resumer:= expr.resumer
expr2.lifetime := expr.lifetime
expr1.resumer := expr.resumer
expr1.lifetime := expr.lifetime
expr.failer := expr2.failer
expr.gen := true
}

The first operand of an if expression is bounded and its result is discarded. The other two
operands are treated similar to those of alternation. Because there are two independent execution
paths, the rightmost resumer may not be well-defined. However, it is always conservative to treat
the resumer as if it is farther right than it really is; this just means that an intermediate value is kept
around longer than needed. If there is no resumer beyond the if expression, but at least one of the
branches can fail, the failure is treated as if it came from the end of the if expression (represented by
the node for the expression). Because backtracking out of an if expression is rare, this inaccuracy
is of little practical consequence. The if expression is a generator if either branch is a generator:
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expr ::= if expr1 then expr2 else expr3 {
expr3.resumer := expr.resumer
expr3.lifetime := expr.lifetime
expr2.resumer := expr.resumer
expr2.lifetime := expr.lifetime
expr1.resumer := null
expr1.lifetime := null
if expr.resumer = null & (expr1.failer 6= null | expr2.failer 6= null) then

expr.failer := expr.node
else

expr.failer = expr.resumer
expr.gen := (expr2.gen | expr3.gen)
}

The do clause of every is bounded and its result discarded. The control clause is always resumed
at the end of the loop and can never be resumed by anything else. The value of the control clause
is discarded. Ignoring break expressions, the loop always fails:

expr ::= every expr1 do expr2 {
expr2.resumer := null
expr2.lifetime := null
expr1.resumer := expr.node
expr1.lifetime := null
expr.failer := expr.node
expr.gen := false
}

Handling break expressions requires some stack-like attributes. These are similar to the ones
used in the control flow analyses described in O’Bagy’s dissertation [.tr88-31.] and the ones used
to construct flow graphs in the original technical report on type inferencing.

The attributes presented here can be computed with one walk of the syntax tree. At a node,
subtrees are processed in reverse execution order: first the resumer and lifetime attributes of a
subtree are computed, then the subtree is walked. Next the failer and gen attributes for the node
itself are computed, and the walk moves back up to the parent node.



300



Chapter 18

Overview of the Compiler

18.1 Components of the Compiler

The Icon compiler is divided into two components: a run-time system and the compiler itself.
This organization is illustrated below. In the diagram, labeled boxes represent programs, other text
(some of it delimited by braces) represents files, and arrows represent data flow.

grttin.h

oasgn.rtt
. . .

fstructs.rtt
. . .

rtt
C
Source
Files

C
Compiler

Object
Files

Library
Maintenance
Program

rmemmgt.c
. . .

rt.db rt.h rt.a

prog.icn iconc
prog.c
prog.h

C
Compiler /
Linker

prog

Figure 18.1: Organization of the compiler and run-time system

The run-time system appears above the dotted line and the compiler itself appears below the
line. The programs shown with the run-time system are executed once when the run-time system
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is installed or updated. They build a data base, rt.db, and an object-code library, rt.a, for use by
the compiler. The general definition of the term ``data base’’ is used here: a collection of related
data. rt.db is stored as a text file. It is accessed and manipulated in internal tables by the programs
rtt and iconc. The rtt program is specific to the Icon compiler system and is described below. The
C compiler and the library maintenance program are those native to the system on which the Icon
compiler is being used. The format of the object-code library is dictated by the linker used with the
C compiler. The file rt.h contains C definitions shared by the routines in the run-time system and
code generated by the compiler.

The diagram of the compiler itself reflects the fact that the Icon compiler uses a C compiler and
linker as a back end. However, iconc automatically invokes these programs, so the Icon program-
mer sees a single tool that takes Icon source as input and produces an executable file.

18.2 The Run-time System

As with the run-time system for the interpreter, the run-time system for the compiler implements
Icon’s operations. However, the compiler has needs beyond those of the interpreter. In the in-
terpreter’s run-time system, all operations are implemented as C functions conforming to certain
conventions. The interpreter uses the same implementation of an operation for all uses of the oper-
ation. While this approach results in acceptable performance for many Icon programs, the purpose
of an optimizing compiler is to obtain better performance. A major goal in the development of
iconc is to use information from type inferencing to tailor the parameter passing and parameter
type conversions of an operation to particular uses of the operation and to place code in line where
appropriate. The compiler needs a mechanism to support this tailored operation invocation. In
addition, the compiler needs information about the properties of operations for use in performing
type inferencing and other analyses.

In addition to supporting the analyses and optimizations of iconc, there are several other major
goals in the design of the compiler’s run-time system. These include

• Specification of all information about an operation in one place.

• Use of one coding to produce both general and tailored implementation of an operation.

• Use of the pre-existing run-time system as a basis for the new one.

Most of the design goals for the run-time system would best be served by a special-purpose
language in which to implement the run-time system. Such a language would allow the properties
of an operation needed by various analyses to be either explicitly coded or easily inferred from
parts of the code used to produce an implementation of the operation. The language would also
allow easy recognition and manipulation of parts of the code that need to be tailored to individual
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uses of an operation. In addition, the language would provide support for features of Icon such as
its data types and goal-directed evaluation.

While a special-purpose language is consistent with most design goals, it is not consistent with
using the interpreter’s run-time system written in C as a basis for that of the compiler. A special-
purpose language also has the problem that it requires a large effort to implement. These conflicting
goals are resolved with a language that is a compromise between an ideal special-purpose imple-
mentation language and C. The core of the language is C, but the language contains special features
for specifying those aspects of a run-time operation that must be dealt with by the compiler. This
language is called the implementation language for the Icon compiler’s run-time system. Because
the implementation language is designed around C, much of the detailed code for implementing an
operation can be borrowed from the interpreter system with only minor changes. The important
facets of the implementation language are discussed here. A full description of the language can be
found in the reference manual for the language [Walker94]. The core material from this reference
manual is included as Appendix A of this dissertation.

18.3 The Implementation Language

The implementation language is used to describe the operators, keywords, and built-in functions of
Icon. In addition to these operations, the run-time system contains routines to support other features
of Icon such as general invocation, co-expression activation, and storage management. These other
routines are written in C.

The program rtt takes as input files containing operations coded in the implementation language
and translates the operations into pure C. rtt also builds the data base, rt.db, with information about
the operations. In addition to operations written in the implementation language, rtt input may
contain C functions. These C functions can use several of the extensions available to the detailed C
code in the operations. These extensions are translated into ordinary C code. While not critical to
the goals of the run-time system design, the ability to use these extensions in otherwise ordinary C
functions is very convenient.

The definition of an operation is composed of three layers. The outer layer brackets the code
for the operation. It consists of a header at the beginning of the code and the reserved word end at
the end of the code. The header may be preceded by an optional description of the operation in the
form of a string literal; this description is used only for documentation. The second layer consists of
type checking and type conversion code. Type checking code may be nested. The inner layer is the
detailed C code, abstract type computations, and code to handle run-time errors. An abstract type
computation describes the possible side-effects and result types of the operation in a form that type
inferencing can use. This feature is needed because it is sometimes impractically difficult to deduce
this information from the C code. The code to handle run-time errors is exposed; that is, it is not
buried within the detailed C code. Because of this, type inferencing can easily determine conditions



304

under which an operation terminates without either producing a value or failing. (A further reason
for exposing this code is explained in the implementation language reference manual in the section
on scoping.)

An operation header starts with one of the three reserved words operator, function, or keyword.
The header contains a description of the operation’s result sequence, that is, how many results it
can produce. This includes both the minimum and maximum number of results, with * indicating
an unbounded number. In addition, it indicates, by a trailing +, when an operation can be resumed
to perform a side-effect after it has produced its last result. This information is somewhat more
detailed than can easily be inferred by looking at the returns, suspends, and fails in the detailed C
code. The information is put in the data base for use by the analysis phases of iconc.

An operation header also includes an identifier. This provides the name for built-in functions
and keywords. For all types of operations, rtt uses the identifier to construct the names of the
C functions that implement the operations. The headers for operators also include an operator
symbol. The parser for iconc is not required to use this symbol for the syntax of the operation, but
for most operations it does so; list creation, [. . . ], is an example of an exception. The headers for
built-in functions and operators include a parameter list. The list provides names for the parameters
and indicates whether dereferenced and/or undereferenced versions of the corresponding argument
are needed by the operation. It also indicates whether the operation takes a variable number of
arguments.

The following are five examples of operation headers.

function{0,1+} move(i)

function{} bal(c1,c2,c3,s,i,j)

operator{1} [...] llist(elems[n])

operator{0,1} / null(underef x –> dx)

keyword{3} regions

move is a function that takes one argument. It may produce zero or one result and may be resumed
to produce a side effect after its last result. bal is a function that takes six arguments. It produces
an arbitrary number of results. The list-creation operator is given the symbol [...] (which may be
used for string invocation, if string invocation is enabled) and is given the name llist. It takes an
arbitrary number of arguments with elems being the array of arguments and n being the number of
arguments. List creation always produces one result. The / operator is given the name null. It takes
one argument, but both undereferenced and dereferenced versions are needed by the operation. It
produces either zero or one result. &regions is a keyword that produces three results.
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Type checking and type conversion constructs consist of an if-then construct, an if-then-else
construct, a type_case construct that selects code to execute based on the type of an argument, and
a len_case construct that selects code to execute based on the number of arguments in the variable
part of a variable-length argument list. The conditions in the if-then and if-then-else constructs
are composed of operations that check the types of arguments or attempt to convert arguments to
specific types.

A type check starts with “is:”. This is followed by the name of a type and an argument in
parentheses. For example, the then clause of the following if is executed if x is a list.

if is:list(x) then ...

A type conversion is similar to a type check, but starts with “cnv:”. For example, the following
code attempts to convert s to a string. If the conversion succeeds, the then clause of the if is
executed.

if cnv:string(s) then ...

There are forms of conversion that convert a null value into a specified default value, forms that
put a converted value in a location other than the parameter, and forms that convert Icon values into
certain types of C values. The later type of conversion is convenient because the detailed code is
expressed in C. In addition, exposing conversions back and forth between Icon and C values leaves
open the possibility of future optimizations to eliminate unnecessary conversions to Icon values.
The control clause of an if may also use limited forms of expressions involving boolean opera-
tors. The full syntax and semantics of conversions are described in the implementation language
reference manual.

Detailed code is expressed in a slightly extended version of C and is introduced by one of two
constructs. The first is

inline { extended C }

This indicates that it is reasonable for the Icon compiler to put the detailed code in line. The
second construct is

body { extended C }

This indicates that the detailed code is too large to be put in line and should only appear as part
of a C function in the run-time library. The person who codes the operation is free to decide which
pieces of detailed code are suitable to in-lining and which are not. The decision is easily changed,
so an operation can be fine tuned after viewing the code produced by the compiler.

One extension to C is the ability to declare variables that are tended with respect to garbage
collection. Another extension is the ability to use some constructs of the implementation language,
such as type conversions, within the C code. An important extension is the inclusion of return, sus-
pend, and fail statements that are analogous to their Icon counterparts. This extension, combined
with the operation headers, makes the coding of run-time routines independent of the C calling
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conventions used in the compiler system. The return and suspend statements have forms that con-
vert C values to Icon values, providing inverses to conversions in the type checking code of the
implementation language.

This mechanism is more than is necessary for those keywords that are simple constants. For
keywords that are string, cset, integer, or real constants there is a special form of definition. The
Icon compiler treats keywords coded with these definitions as manifest constants. When future
versions of the Icon compiler implement constant folding, that optimization will be automatically
applied to these keywords.

18.4 Standard and Tailored Operation Implementations

For every operation that it translates, except keywords, rtt creates a C function conforming to the
standard calling conventions of the compiler system. With the help of the C compiler and library
maintenance routine, rtt puts an object module for that function in the compiler system’s run-
time library. This function is suitable for invocation through a procedure block. It is used with
unoptimized invocations.

rtt creates an entry in the data base for every operation it translates, including keywords. This
entry contains the code for the operation. The code is stored in the data base in a form that is easier
to parse and process than the original source, and the body statements are replaced by calls to C
functions. These C functions are in the run-time library and implement the code from the body
statement. The calling conventions for these functions are tailored to the needs of the code and do
not, in general, conform to the standard calling conventions of the compiler system.

When the compiler can determine that a particular operation is being invoked, it locates the
operation in the data base and applies information from type inferencing to simplify or eliminate
the code in the operation that performs type checking and conversions on arguments. These simpli-
fications will eliminate detailed code that will never be executed in this invocation of the operation.
The compiler can attempt the simplification because the type checking code is in the data base in a
form that is easily dealt with. If enough simplification is possible, a tailored version of the opera-
tion is generated in line. This tailored version includes the simplified type checking code, if there
is any left. For detailed code that has not been eliminated by the simplification, the tailored version
also includes the C code from inline statements and includes calls to the functions that implement
the code in body statements. The process of producing tailored versions of built-in operations is
described in more detail in a later chapter.

Ideally, when unique types can be inferred for the operands of an operation, the compiler should
either produce a small piece of type-specific in-line C code or produce a call to a type-specific
C function implementing the operation. It is possible to code operations in the implementation
language such that the compiler can do this. In addition, this is the natural way to code most
operations. For the few exceptions, there are reasonable compromises between ideal generated
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code and elegant coding in the implementation language. This demonstrates that the design and
implementation of the run-time system and its communication with the compiler is successful.
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Chapter 19

Organization of Iconc

The Icon compiler, iconc, takes as input the source code for an Icon program and, with the help of
a C compiler and linker, produces an executable file. The source code may be contained in several
files, but iconc does not support separate compilation. It processes an entire program at once.
This requirement simplifies several of the analyses, while allowing them to compute more accurate
information. Without the entire program being available, the effects of procedures in other files is
unknown. In fact, it is not possible to distinguish built-in functions from missing procedures. Type
inferencing would be particularly weakened. It would have to assume that any call to an undeclared
variable could have any side effect on global variables (including procedure variables) and on any
data structure reachable through global variables or parameters.

19.1 Compiler Phases

Iconc is organized into a number of phases. These are illustrated in the diagram on the following
page.

The initialization phase includes reading a data base of information about run-time routines into
internal tables. This information is used in many of the other phases.

The source analysis phase consists of a lexical analyzer and parser. These are adapted from
those used in the interpreter system. The parser generates abstract syntax trees and symbol tables
for all procedures before subsequent phases are invoked. The symbol resolution phase determines
the scope of variables that are not declared in the procedures where they are used. This resolution
can only be done completely after all source files for the program are read. If a variable does not
have a local declaration, the compiler checks to see whether the variable is declared global (possibly
as a procedure or record constructor) in one of the source files. If not, the compiler checks to see
whether the variable name matches that of a built-in function. If the name is still not resolved, it is
considered to be a local variable.
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19.2 Naive Optimizations

Naive optimizations involve invocation and assignment. These optimizations are done before type
inferencing to aid that analysis. Certain “debugging features” of Icon such as the variable function
interfere with these optimizations. By default, these features are disabled. If the user of iconc
requests the debugging features, these optimizations are bypassed. While these optimizations are
being done, information is gathered about whether procedures suspend, return, or fail. This infor-
mation is used in several places in the compiler.

The invocation optimization replaces general invocation by a direct form of invocation to a
procedure, a built-in function, or a record constructor. This optimization involves modifying nodes
in the syntax tree. It only applies to invocations where the expression being invoked is a global
variable initialized to a value in one of the three classes of procedure values. First, the Icon program
is analyzed to determine which variables of this type appear only as the immediate operands of
invocations. No such variable is ever assigned to, so it retains its initial value throughout the
program (a more exact analysis could be done to determine the variables that are not assigned to,
but this would seldom yield better results in real Icon programs because these programs seldom
do anything with procedure values other that invoke them). This means that all invocations of
these variables can be replaced by direct invocations. In addition, the variables themselves can be
discarded as they are no longer referenced.

The invocation optimization improves the speed of type inferencing in two ways, although it
does nothing to improve the accuracy of the information produced. Performing type inferencing on
direct invocations is faster than performing it on general invocations. In addition, type inferencing
has fewer variables to handle, which also speeds it up.

The invocation optimization does improve code generated by the compiler. In theory, the opti-
mization could be done better after type inferencing using the information from that analysis, but
in practice this would seldom produce better results. On most real Icon programs, this optimization
using the naive analysis replaces all general invocations with direct ones.

As noted in Chapter 15, it is important for type inferencing to distinguish strong updates from
weak updates. The data base contains a general description of assignment, but it would be difficult
for a type inferencing system to use the description in recognizing that a simple assignment or an
augmented assignment to a named variable is a strong update. It is much easier to change general
assignments where the left hand side is a named variable to a special assignment and have type in-
ferencing know that the special assignment is a strong update. Special-casing assignment to named
variables is also important for code generation. General optimizations to run-time routines are not
adequate to produce the desired code for these assignments. The optimizations to assignment are
described in Chapter 22.

The details of type inferencing are described in other chapters. Producing code for the C main
function, global variables, constants, and record constructors is straightforward. C code is written
to two files for organizational purposes; it allows definitions and code to be written in parallel.
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19.3 Code Generation for Procedures

Producing code for procedures involves several sub-phases. The sub-phases are liveness analysis,
basic code generation, fix-up and peephole optimization, and output. During this phase of code
generation, procedures are processed one at at time.

These sub-phases are described in later chapters. The code fix-up phase and peephole opti-
mization are performed during the same pass over the internal representation of the C code. Some
clean-up from peephole optimization is performed when the code is written. The logical organiza-
tion of the compiler places the fix-up phase as a pass in code generation with peephole optimization
being a separate phase. The organization of this dissertation reflects the logical organization of the
compiler rather than its physical organization.

The physical organization of this phase is shown in the following diagram.
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symbol tables
and annotated
syntax trees

liveness analysis

code generation for
a procedure

fix-up and peephole
optimization

output
prog.h

prog.c
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Figure 19.2: The physical organization of the code generation phase



Chapter 20

The Implementation of Type Inferencing

Chapter 15 develops a theoretical type inferencing model for Icon, called Model 3. The purpose
of that chapter is to explain the relationship between type inferencing and the semantics of Icon;
for simplicity, some features of the language along with certain questions of practical importance
are ignored in that chapter. This chapter describes the implementation of the type inferencing
system used in the Icon compiler. The implementation is based on Model 3. This chapter describes
solutions to those issues that must be addressed in developing a complete practical type inferencing
system from Model 3. The issues include:

• the representation of types and stores

• the development of a type system for the full Icon language

• the handing of procedure calls and co-expression activation

• the determination of edges in the flow graph

• the computation of a fixed point for type information

In addition, performance of the abstract interpretation must be considered. This includes both
speed and memory usage.

20.1 The Representation of Types and Stores

A type consists of a set of basic types (technically, it is a union of basic types, but the constituents
of the basic types are not explicitly represented). The operations needed for these sets are: add a
basic type to a set, form the union of two sets, form the intersection of two sets, test for membership
in a set, and generate members of a subrange of basic types (for example, generate all members that
are list types). A bit vector is used for the set representation, with a basic type represented by an
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integer index into the vector. The required operations are simple and efficient to implement using
this representation. Unless the sets are large and sparse, this representation is also space efficient.
While the sets of types are often sparse, for typical programs, they are not large.

A store is implemented as an array of pointers to types. A mapping is established from variable
references to indexes in the store. In the type inferencing model, Model 3, presented in Chapter
15, there is one kind of store that contains all variables. In the actual implementation, temporary
variables need not be kept in this store. The purpose of this store is to propagate a change to a
variable to the program points affected by the change. A temporary variable is set in one place in
the program and used in one place; there is nothing to determine dynamically. It is both effective
and efficient to store the type of a temporary variable in the corresponding node of the syntax tree.

Another level of abstraction can be developed that requires much less memory than Model 3,
but it must be modified to produce good results. This abstraction abandons the practice of a store
for every edge in the flow graph. Instead it has a single store that is a merger of all the stores in
Model 3 (the type associated with a variable in a merged store is the union of the types obtained
for that variable from each store being merged). For variables that are truly of one type throughout
execution, this abstraction works well. Named variables do not have this property. They have
an initial null value and usually are assigned a value of another type during execution. Because
assignments to named variables are treated as strong updates, Model 3 can often deduce that a
variable does not contain the null type at specific points in the flow graph.

For structure variables this further abstraction does work well in practice. These variables are
initialized to the empty type (that is, no instances of these variables exist at the start of program
execution), so the problem of the initial null type does not occur. Sometimes instances of these
variables are created with the null type and later changed. However, the fact that assignments to
these variables must be treated as weak updates means that type inferencing must assume that these
variables can always retain their earlier type after an assignment. Propagating type information
about structure variables through the syntax tree does not help much in these circumstances. While
it is possible to construct example programs where Model 3 works better for structure variables
than this further abstraction, experiments with prototype type inferencing systems indicate that the
original system seldom gives better information for real programs [.tr88-25.].

Type inferencing in the compiler is implemented with two kinds of stores: local stores that
are associated with edges in the flow graph and contain named variables (both local and global
variables) and a global store that contains structure variables (in the implementation, the global
store is actually broken up by structure-variable type into several arrays).

20.2 A Full Type System

Model 3 from Chapter 15 includes no structure type other than lists, nor does it consider how to
handle types for procedure and co-expression values to allow effective type inferencing in their
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presence. This section develops a complete and effective type system for Icon.
Most of the structure types of Icon are assigned several subtypes in the type inferencing system.

As explained for lists in Chapter 15, these subtypes are associated with the program points where
values of the type are created. The exception to this approach is records. One type is created per
record declaration. While it is possible to assign a subtype to each use of a record constructor, in
practice a given kind of record usually is used consistently with respect to the types of its fields
throughout a program. The extra subtypes would require more storage while seldom improving the
resulting type information.

For efficiency, the size of the bit vectors representing types and the size of the stores need
to remain fixed during abstract interpretation. This means that all subtypes must be determined
as part of the initialization of the type inferencing system. In order to avoid excessive storage
usage, it is important to avoid creating many subtypes for program points where structures are not
created. The invocation optimization described in Chapter 19 helps determine where structures
can and cannot be created by determining for most invocations what operation is used. The type
inferencing system determines what structures an operation can create by examining the abstract
type computations associated with the operation in the data base. A new clause in an abstract type
computation indicates that a structure can be created. The following example is the abstract type
computation from the built-in function list. It indicates the the function creates and returns a new
list with elements whose type is the same as that of the parameter x (the second parameter).

abstract {
return new list(type(x))
}

This is the clause as written by the programmer developing the run-time library; it is translated
into an internal form for storage in the data base.

Invocation optimizations may not identify the operation associated with some invocations. The
initialization phase of type inferencing skips these invocations. Type inferencing may later discover
that one of these invocations can create a structure. Each structure type is given one subtype that is
used for all of these later discoveries. While it is possible for there to be several of these creation
points representing logically distinct subtypes, this seldom occurs in practice. If it does happen,
type inferencing produces a correct, but less precise, result.

The type system contains representations for all run-time values that must be modeled in the
abstract interpretation. These run-time values can be divided into three categories, each of which
is a superset of the previous category:

• the first-class Icon values

• the intermediate values of expression evaluation



316

• the values used internally by Icon operations

Just as these categories appear in different places during the execution of an Icon program,
the corresponding types appear in different places during abstract interpretation. If certain types
cannot appear as the result of a particular type computation, it is not necessary to have elements
in the bit vector produced by the computation to represent those types. It is particularly important
to minimize the memory used for stores associated with edges of the flow graph (this is discussed
more in the last section of this chapter). These stores contain only the types of the smallest set
listed above: the first-class values.

Types (or subtypes) are allocated bit vector indexes. The first-class types may appear as the
result of any of the three classes of computation. They are allocated indexes at the front of the bit
vectors. If they are the only types that can result from an abstract computation, the bit vector for
the result has no elements beyond that of the last first-class types. The first-class types are:

• null

• string

• cset

• integer

• real

• file

• list subtypes

• set subtypes

• table subtypes

• record subtypes

• procedure subtypes

• co-expression subtypes

The list subtypes are allocated with

• one for the argument to the main procedure

• one for each easily recognized creation point

• one representing all other lists
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The set subtypes are allocated with

• one for each easily recognized creation point

• one representing all other sets

The table subtypes are allocated with

• one for each easily recognized creation point

• one representing all other tables

The record subtypes are allocated with one for each record declaration. The procedure subtypes
are allocated with

• one for each procedure

• one for each record constructor

• one for each built-in function

• one representing operators available for string invocation

Note that procedure subtypes are allocated after most procedure and function values have been
eliminated by invocation optimizations (the procedures and functions are still there, they are just not
Icon values). Therefore, few of these subtypes are actually allocated. The co-expression subtypes
are allocated with

• one for the main co-expression

• one for each create expression

The bit vectors used to hold the intermediate results of performing abstract interpretation on
expressions must be able to represent the basic types plus the variable reference types. Variable
reference types are allocated bit vector indexes following those of the basic types. The bit vectors
for intermediate results are just long enough to contain these two classifications of types. The
variable reference types are

• integer keyword variable types

• &pos

• &subject

• substring trapped variable types
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• table-element trapped variable types

• list-element reference types

• table assigned-value reference types

• field reference types

• global variable reference types

• local variable reference types

&random and &trace behave the same way from the perspective of the type inferencing system,
so they are grouped under one type as integer keyword variables. The fact that &pos can cause
assignment to fail is reflected in the type inferencing system, so it is given a separate type. &subject
is the only string keyword variable so it is in a type by itself.

Substring trapped variables and table-element trapped variables are “hidden” structures in the
implementation of Icon. They appear as intermediate results, but are only indirectly observable in
the semantics of Icon. In order to reflect these semantics in the type inferencing system, there are
substring trapped variable types and table-element trapped variable types. These are structure types
similar to sets, but are variable reference types rather than first-class types. The substring trapped
variable types are allocated with

• one for each easily recognized creation point

• one representing all other substring trapped variables

The table-element trapped variable types are allocated with

• one for each easily recognized creation point

• one representing all other table-element trapped variables

List elements, table assigned-values, and record fields are all variables that can appear as the
intermediate results of expression evaluation. The type system has corresponding variable reference
types to represent them. The list-element reference types are allocated with one for each list types.
The table assigned-value reference types are allocated with one for each table type. The field
reference types are allocated with one for each record field declaration.

Identifiers are variables and are reflected in the type system. The global variable reference types
are allocated with

• one for each global variable (except those eliminated by invocation optimizations).
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• one for each static variable

The local variable reference types are allocated with one for each local variable, but the bit
vector indexes and store indexes are reused between procedures. The next section describes why
this reuse is possible.

Icon’s operators use a number of internal values that never “escape” as intermediate results.
Some of these internal values are reflected in the type system in order to describe the semantics
of the operations in the abstract interpretation. The full set of types that can be used to express
these semantics are presented in the syntax of the abstract type computations of the run-time im-
plementation language; see Appendix G. In addition to the types of intermediate results, these types
include

• set-element reference types

• table key reference types

• table default value reference types

• references to the fields within substring trapped variables that reference variables

• references to fields within table-element trapped variables that reference tables

These types are allocated bit vector indexes at the end of the type system. The only bit vectors
large enough to contain them are the temporary bit vectors used during interpretation of the abstract
type computations of built-in operations.

Set elements, table keys, and table default values do not appear as variable references in the
results of expression evaluation. However, it is necessary to refer to them in order to describe the
effects of certain Icon operations. For this reason, they are included in the type system. The set-
element reference types are allocated with one for each set type. The table key reference types are
allocated with one for each table type. The table default value reference types are allocated with
one for each table type.

Substring trapped variable types contain references to the variable types being trapped and
table-element trapped variable types contain references to the table types containing the element
being trapped. These references are fields within these trapped variable types. There is one field
reference type for each trapped variable type.

20.3 Procedure Calls and Co-Expression Activations

A type inferencing system for the full Icon language must handle procedures and co-expressions.
As noted above, each procedure and each create expression is given its own type. This allows
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the type inferencing system to accurately determine which procedures are invoked and what co-
expressions might be activated by a particular expression.

The standard semantics for procedures and co-expressions can be implemented using stacks
of procedure activation frames, with one stack per co-expression. The first frame, on every stack
except that of the main co-expression, is a copy of the frame for the procedure that created the co-
expression. The local variables in this frame are used for evaluating the code of the co-expression.
The type inferencing system uses a trivial abstraction of these procedure frame stacks, while cap-
turing the possible transfers of control induced by procedure calls and co-expression activations.

The type inferencing system, in effect, uses an environment that has one frame per procedure,
where that frame is a summary of all frames for the procedure that could occur in a corresponding
environment of an implementation of the standard semantics. The frame is simply a portion of
the store that contains local variables. Because no other procedure can alter a local variable, it is
unnecessary to pass the types of local variables into procedure calls. If the called procedure returns
control via a return, suspend, or fail, the types are unchanged, so they can be passed directly across
the call. This allows the type inferencing system to keep only the local variables of a procedure in
the stores on the edges of the flow graph for the procedure, rather than keeping the local variables
of all procedures. Global variables must be passed into and out of procedure calls. Because static
variables may be altered in recursive calls, they must also be passed into and out of procedure calls.

A flow graph for an entire program is constructed from the flow graphs for its individual pro-
cedures and co-expressions. An edge is added from every invocation of a procedure to the head
of that procedure and edges are added from every return, suspend, and fail back to the invocation.
In addition, edges must be added from an invocation of a procedure to all the suspends in the pro-
cedure to represent resumption. When it is not possible to predetermine which procedure is being
invoked, edges are effectively added from the invocation to all procedures whose invocation cannot
be ruled out based on the naive invocation optimizations. Edges are effectively added between all
co-expressions and all activations, and between all activations. Information is propagated along
an edge when type inferencing deduces that the corresponding procedure call or co-expression
activation might actually occur. The representation of edges in the flow graph is discussed below.

Type inferencing must reflect the initializations performed when a procedure is invoked. Local
variables are initialized to the null value. On the first call to the procedure, static variables are also
initialized to the null value. The initialization code for the standard semantics is similar to

initialize locals
if (first_call) {

initialize statics
user initialization code

}

In type inferencing, the variables are initialized to the null type and the condition on the if is
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ignored. Type inferencing simply knows that the first-call code is executed sometimes and not
others. Before entering the main procedure, global variables are set to the null type and all static
variables are set to the empty type. In some sense, the empty type represents an impossible execu-
tion path. Type inferencing sees paths in the flow graph from the start of the program to the body
of a procedure that never pass through the initialization code. However, static variables have an
empty type along this path and no operation on them is valid. Invalid operations contribute nothing
to type information.

20.4 The Flow Graph and Type Computations

In order to determine the types of variables at the points where they are used, type inferencing must
compute the contents of the stores along edges in the flow graph. Permanently allocating the store
on each edge can use a large amount of memory. The usage is

M = E(G+ S + L)T/8

M — total memory, expressed in bytes, used by stores.
E — the number of edges in the program flow graph.
G — the number of global variables in the program.
S — the number of static variables in the program.
L — the maximum number of local variables in any procedure.
T — the number of types in the type system.

Large programs with many structure creation points can produce thousands of edges, dozens of
variables, and hundreds of types, requiring megabytes of memory to represent the stores.

The code generation phase of the compiler just needs the (possibly dereferenced) types of
operands, not the stores. If dereferenced types are kept at the expressions where they are needed, it
is not necessary to keep a store with each edge of the flow graph.

Consider a section of straight-line code with no backtracking. Abstract interpretation can be
performed on the graph starting with the initial store at the initial node and proceeding in execution
order. At each node, the store on the edge entering the node is used to dereference variables and
to compute the next store if there are side effects. Once the computations at a node are done, the
store on the edge entering the node is no longer needed. If updates are done carefully, they can be
done in-place, so that the same memory can be used for both the store entering a node and the one
leaving it.

In the case of branching control paths (as in a case expression), abstract interpretation must
proceed along one path at a time. The store at the start the branching of paths must be saved for use
with each path. However, it need only be saved until the last path is interpreted. At that point, the
memory for the store can be reused. When paths join, the stores along each path must be merged.
The merging can be done as each path is completed; the store from the path can then be reused
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in interpreting other paths. When all paths have been interpreted, the merged store becomes the
current store for the node at the join point.

The start of a loop is a point where control paths join. Unlike abstract interpretation for the
joining of simple branching paths, abstract interpretation for the joining of back edges is not just
a matter of interpreting all paths leading to the join point before proceeding. The edge leaving the
start of the loop is itself on a path leading to the start of the loop. Circular dependencies among
stores are handled by repeatedly performing the abstract interpretation until a fixed point is reached.
In this type inferencing system, abstract interpretation is performed in iterations, with each node in
the flow graph visited once per iteration. The nodes are visited in execution order. For back edges,
the store from the previous iteration is used in the interpretation. The stores on these edges must
be kept throughout the interpretation. These stores are initialized to map all variables to the empty
type. This represents the fact that the abstract interpretation has not yet proven that execution can
reach the corresponding edge.

The type inferencing system never explicitly represents the edges of the flow graph in a data
structure. Icon is a structured programming language. Many edges are implicit in a tree walk
performed in forward execution order – the order in which type inferencing is performed. The
location of back edges must be predetermined in order to allocate stores for them, but the edges
themselves are effectively recomputed as part of the abstract interpretation.

There are two kinds of back edges. The back edges caused by looping control structures can be
trivially deduced from the syntax tree. A store for such an edge is kept in the node for the control
structure. Other back edges are induced by goal-directed evaluation. These edges are determined
with the same techniques used in liveness analysis. A store for such an edge is kept in the node
of the suspending operation that forms the start of the loop. Because the node can be the start of
several nested loops, this store is actually the merged store for the stores that theoretically exist on
each back edge.

At any point in abstract interpretation, three stores are of interest. The current store is the store
entering the node on which abstract interpretation is currently being performed. It is created by
merging the stores on the incoming edges. The success store is the store representing the state of
computations when the operation succeeds. It is usually created by modifying the current store.
The failure store is the store representing the state of computations when the operation fails.

In the presence of a suspended operation, the failure store is the store kept at the node for that
operation. A new failure store is established whenever a resumable operation is encountered. This
works because abstract interpretation is performed in forward execution order and resumption is
LIFO. Control structures, such as if-then-else, with branching and joining paths of execution, cause
difficulties because there may be more than one possible suspended operation when execution
leaves the control structure. This results in more than one failure store during abstract interpre-
tation. Rather than keeping multiple failure stores when such a control structure has operations
that suspend on multiple paths, type inferencing pretends that the control structure ends with an
operation that does nothing other than suspend and then fail. It allocates a store for this operation
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in the node for the control structure. When later operations that fail are encountered, this store is
updated. The failure of this imaginary operation is the only failure seen by paths created by the
control structure and the information needed to update the failure stores for these paths is that in the
store for this imaginary operation. This works because the imaginary operation just passes along
failure without modifying the store.

In the case where a control structure transforms failure into forward execution, as in the first
subexpression of a compound expression, the failure store is allocated (with empty types) when
the control structure is encountered and deallocated when it is no longer needed. If no failure can
occur, no failure store need be allocated. The lack of possible failure is noted while the location of
back edges is being computed during the initialization of type inferencing. Because a failure store
may be updated at several operations that can fail, these are weak updates. Typically, a failure store
is updated by merging the current store into it.

The interprocedural flow graph described earlier in this chapter has edges between invocations
and returns, suspends, and fails. Type inferencing does not maintain separate stores for these
theoretical edges. Instead it maintains three stores per procedure that are mergers of stores on
several edges. One store is the merger of all stores entering the procedure because of invocation;
this store contains parameter types in addition to the types of global and static variables. Another
store is the merger of all stores entering the procedure because of resumption. The third store is
the merger of all stores leaving the procedure because of returns, suspends, and fails. There is also
a result type associated with the procedure. It is updated when abstract interpretation encounters
returns and suspends.

Two stores are associated with each co-expression. One is the merger of all stores entering the
co-expression and the other is the merger of all stores leaving the co-expression. Execution can
not only leave through an activation operator, it can also re-enter through the activation. The store
entering the activation is a merger of the stores entering all co-expressions in which the activation
can occur. Because a procedure containing an activation may be called from several co-expressions,
it is necessary to keep track of those co-expressions. A set of co-expressions is associated with each
procedure for this purpose. Each co-expression also contains a type for the values transmitted to
it. The result type of an activation includes the result types for all co-expressions that might be
activated and the types of all values that can be transmitted to a co-expression that the activation
might be executed in.

When type inferencing encounters the invocation of a built-in operation, it performs abstract
interpretation on the representation of the operation in the data base. It interprets the type-checking
code to see what paths might be taken through the operation. The interpretation uses the abstract
type computations and ignores the detailed C code when determining the side effects and result
type of the operation. Because the code at this level of detail contains no loops, it is not necessary
to save stores internal to operations. An operation is re-interpreted at each invocation. This allows
type inferencing to produce good results for polymorphous operations. At this level, the code for
an operation is simple enough that the cost of re-interpretation is not prohibitive. All side effects
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within these operations are treated as weak updates; the only strong updates recognized by type
inferencing are the optimized assignments to named variables (see Chapter 18).

The abstract semantics of control structures are hard-coded within the type inferencing system.
The system combines all the elements described in this chapter to perform the abstract interpre-
tation. A global flag is set any time an update changes type information that is used in the next
iteration of abstract interpretation. The flag is cleared between iterations. If the flag is not set
during an iteration, a fixed point has been reached and the interpretation halts.



Chapter 21

Code Generation

This chapter describes the code generation process. The examples of generated code presented here
are produced by the compiler, but some cosmetic changes have been made to enhance readability.

Code generation is done one procedure at a time. An Icon procedure is, in general, translated
into several C functions. There is always an outer function for the procedure. This is the function
that is seen as implementing the procedure. In addition to the outer function, there may be several
functions for success continuations that are used to implement generative expressions.

The outer function of a procedure must have features that support the semantics of an Icon call,
just as a function implementing a run-time operation does. In general, a procedure must have a
procedure block at run time. This procedure block references the outer function. All functions
referenced through a procedure block must conform to the compiler system’s standard calling con-
ventions. However, invocation optimizations usually eliminate the need for procedure variables
and their associated procedure blocks. When this happens, the calling conventions for the outer
function can be tailored to the needs of the procedure.

As explained in Chapter 14, the standard calling convention requires four parameters: the num-
ber of arguments, a pointer to the beginning of an array of descriptors holding the arguments, a
pointer to a result location, and a success continuation to use for suspension. The function itself is
responsible for dereferencing and argument list adjustment. In a tailored calling convention for an
outer function of a procedure, any dereferencing and argument list adjustment is done at the call
site. This includes creating an Icon list for the end of a variable-sized argument list. The compiler
produces code to do this that is optimized to the particular call. An example of an optimization is
eliminating dereferencing when type inferencing determines that an argument cannot be a variable
reference.

The number of arguments is never needed in these tailored calling conventions because the
number is fixed for the procedure. Arguments are still passed via a pointer to an array of descriptors,
but if there are no arguments, no pointer is needed. If the procedure returns no value, no result
location is needed. If the procedure does not suspend, no success continuation is needed.

In addition to providing a calling interface for the rest of the program, the outer function must
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provide local variables for use by the code generated for the procedure. These variables, along with
several other items, are located in a procedure frame. An Icon procedure frame is implemented as
a C structure embedded within the frame of its outer C function (that is, as a local struct definition).
Code within the outer function can access the procedure frame directly. However, continuations
must use a pointer to the frame. A global C variable, pfp, points to the frame of the currently
executing procedure. For efficiency, continuations load this pointer into a local register variable.
The frame for a main procedure might have the following declaration.

struct PF00_main {
struct p_frame old_pfp;
dptr old_argp;
dptr rslt;
continuation succ_cont;
struct {

struct tend_desc *previous;
int num;
struct descrip d[5];
} tend;

};

with the definition

struct PF00_main frame;

in the procedure’s outer function. A procedure frame always contains the following five items:
a pointer to the frame of the caller, a pointer to the argument list of the caller, a pointer to the
result location of this call, a pointer to the success continuation of this call, and an array of tended
descriptors for this procedure. It may also contain C integer variables, C double variables, and
string and cset buffers for use in converting values. If debugging is enabled, additional information
is stored in the frame. The structure p_frame is a generic procedure frame containing a single
tended descriptor. It is used to define the pointer old_pfp because the caller can be any procedure.

The argument pointer, result location, and success continuation of the call must be available
to the success continuations of the procedure. A global C variable, argp, points the argument list
for the current call. This current argument list pointer could have been put in the procedure frame,
but it is desirable to have quick access to it. Quick access to the result location and the success
continuation of the call is less important, so they are accessed indirectly through the procedure
frame.

The array of descriptors is linked onto the chain used by the garbage collector to locate tended
descriptors. These descriptors are used for Icon variables local to the procedure and for tempo-
rary variables that hold intermediate results. If the function is responsible for dereferencing and
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argument list adjustment (that is, if it does not have a tailored calling convention), the modified
argument list is constructed in a section of these descriptors.

The final thing provided by the outer function is a control environment in which code generation
starts. In particular, it provides the bounding environment for the body of the procedure and the
implicit failure at the end of the procedure. The following C function is the tailored outer function
for a procedure named p. The procedure has arguments and returns a result. However, it does not
suspend, so it needs no success continuation.

static int P01_p(args, rslt)
dptr args;
dptr rslt;
{

struct PF01_p frame;
register int signal;
int i;
frame.old_pfp = pfp;
pfp = (struct p_frame )&frame;
frame.old_argp = argp;
frame.rslt = rslt;
frame.succ_cont = NULL;

for (i = 0; i < 3; ++i)
frame.tend.d[i].dword = D_Null;

argp = args;
frame.tend.num = 3;
frame.tend.previous = tend;
tend = (struct tend_desc )&frame.tend;

translation of the body of procedure p

L10: /* bound */
L4: /* proc fail */

tend = frame.tend.previous;
pfp = frame.old_pfp;
argp = frame.old_argp;
return A_Resume;

L8: /* proc return */
tend = frame.tend.previous;
pfp = frame.old_pfp;
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argp = frame.old_argp;
return A_Continue;
}

The initialization code reflects the fact that this function has three tended descriptors to use for local
variables and intermediate results. L10 is both the bounding label and the failure label for the body
of the procedure. Code to handle procedure failure and return (except for setting the result value)
is at the end of the outer function. As with bounding labels, the labels for these pieces of code have
associated signals. If a procedure fail or return occurs in a success continuation, the continuation
returns the corresponding signal which is propagated to the outer function where it is converted
into a goto. The code for procedure failure is located after the body of the procedure, automatically
implementing the implicit failure at the end of the procedure.

21.1 Translating Icon Expressions

Icon’s goal-directed evaluation makes the implementation of control flow an important issue during
code generation. Code for an expression is generated while walking the expression’s syntax tree
in forward execution order. During code generation there is always a current failure action. This
action is either “branch to a label” or “return a signal”. When the translation of a procedure starts,
the failure action is to branch to the bounding label of the procedure body. The action is changed
when generators are encountered or while control structures that use failure are being translated.

The allocation of temporary variables to intermediate results is discussed in more detail later.
However, some aspects of it will be addressed before presenting examples of generated code. The
result location of a subexpression may be determined when the parent operation is encountered on
the way down the syntax tree. This is usually a temporary variable, but does not have to be. If no
location has been assigned by the time the code generator needs to use it, a temporary variable is
allocated for it. This temporary variable is used in the code for the parent operation.

The code generation process is illustrated below with examples that use a number of control
structures and operations. Code generation for other features of the language is similar.

Consider the process of translating the following Icon expression:

return if a = (1 | 2) then "yes" else "no"

When this expression is encountered, there is some current failure action, perhaps a branch to a
bounding label. The return expression produces no value, so whether a result location has been
assigned to it is of no consequence. If the argument of a return fails, the procedure fails. To handle
this possibility, the current failure action is set to branch to the label for procedure failure before
translating the argument (in this example, that action is not used). The code for the argument is then
generated with its result location set to the result location of the procedure itself. Finally the result
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location is dereferenced and control is transferred to the procedure return label. The dereferencing
function, deref, takes two arguments: a pointer to a source descriptor and a pointer to a destination
descriptor.

code for the if expression
deref(rslt, rslt);
goto L7 /* proc return */;

The control clause of the if expression must be bounded. The code implementing the then clause
must be generated following the bounding label for the control clause. A label must also be set up
for the else clause with a branch to this label used as the failure action for the control clause. Note
that the result location of each branch is the result location of the if expression which is in turn the
result location of the procedure. Because neither branch of the if expression contains operations
that suspend, the two control paths can be brought together with a branch to a label.

code for control clause
L4: /* bound */

rslt->vword.sptr = "yes";
rslt->dword = 3;
goto L6 /* end if */;

L5: /* else */
rslt->vword.sptr = "no";
rslt->dword = 2;

L6: /* end if */

Using a branch and a label to bring together the two control paths of the if expression is an optimiza-
tion. If the then or the else clauses contain operations that suspend, the general continuation model
must be used. In this model, the code following the if expression is put in a success continuation,
which is then called at the end of both the code for the then clause and the code for the else clause.

Next consider the translation of the control clause. The numeric comparison operator takes
two operands. In this translation, the standard calling conventions are used for the library routine
implementing the operator. Therefore, the operands must be in an array of descriptors. This array
is allocated as a sub-array of the tended descriptors for the procedure. In this example, tended
location 0 is occupied by the local variable, a. Tended locations 1 and 2 are free to be allocated as
the arguments to the comparison operator. The code for the first operand simply builds a variable
reference.
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frame.tend.d[1].dword = D_Var;
frame.tend.d[1].vword.descptr = &frame.tend.d[0] /* a */;

However, the second operand is alternation. This is a generator and requires a success continuation.
In this example, the continuation is given the name P02_main (the Icon expression is part of the
main procedure). The continuation contains the invocation of the run-time function implementing
the comparison operator and the end of the bounded expression for the control clause of the if.
The function O0o_numeq implements the comparison operator. The if expression discards the
operator’s result. This is accomplished by using the variable trashcan as the result location for the
call. The compiler knows that this operation does not suspend, so it passes a null continuation to
the function. The end of the bounded expression consists of a transfer of control to the bounding
label. This is accomplished by returning a signal. The continuation is

static int P02_main()
{
register struct PF00_main *rpfp;
rpfp = (struct PF00_main *)pfp;
switch (O0o_numeq(2, &(rpfp->tend.d[1]), &trashcan, (continuation)NULL))

{
case A_Continue:

break;
case A_Resume:

return A_Resume;
}

return 4; /* bound */
}

Each alternative of the alternation must compute the value of its subexpression and call the success
continuation. The failure action for the first alternative is to branch to the second alternative. The
failure action of the second alternative is the failure action of the entire alternation expression. In
this example, the failure action is to branch to the else label of the if expression. In each alterative,
a bounding signal from the continuation must be converted into a branch to the bounding label.
Note that this bounding signal indicates that the control expression succeeded.

frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 1;
switch (P02_main()) {

case A_Resume:



331

goto L2 /* alt */;
case 4 /* bound */:

goto L4 /* bound */;
}

L2: /* alt */
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 2;
switch (P02_main()) {

case A_Resume:
goto L5 /* else */;

case 4 /* bound */:
goto L4 /* bound */;

}

The code for the entire return expression is obtained by putting together all the pieces. The
result is the following code (the code for P02_main is not repeated).

frame.tend.d[1].dword = D_Var;
frame.tend.d[1].vword.descptr = &frame.tend.d[0] /* a */;
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 1;
switch (P02_main()) {

case A_Resume:
goto L2 /* alt */;

case 4 /* bound */:
goto L4 /* bound */;

}
L2: /* alt */

frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 2;
switch (P02_main()) {

case A_Resume:
goto L5 /* else */;

case 4 /* bound */:
goto L4 /* bound */;

}
L4: /* bound */

rslt->vword.sptr = yes;
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rslt->dword = 3;
goto L6 /* end if */;

L5: /* else */
rslt->vword.sptr = no;
rslt->dword = 2;

L6: /* end if */
deref(rslt, rslt);
goto L7 /* proc return */;

21.2 Signal Handling

In order to produce signal handling code, the code generator must know what signals may be
returned from a call. These signals may be either directly produced by the operation (or procedure)
being called or they may originate from a success continuation. Note that either the operation
or the continuation may be missing from a call, but not both. The signals produced directly by
an operation are A_Resume, A_Continue, and A_FallThru (this last signal is only used internally
within in-line code).

The signals produced by a success continuation belong to one of three categories: A_Resume,
signals corresponding to labels within the procedure the continuation belongs to, and signals cor-
responding to labels in procedures farther down in the call chain. The last category only occurs
when the procedure suspends. The success continuation for the procedure call may return a signal
belonging to the calling procedure. This is demonstrated in the following example (the generated
code has been “cleaned-up” a little to make it easier to follow). The Icon program being translated
is

procedure main()
write(p())

end
procedure p()

suspend 1 to 10
end

The generative procedure p is called in a bounded context. The code generated for the call is

switch (P01_p(&frame.tend.d[0], P05_main)) {
case 7 /* bound */:

goto L7 /* bound */;
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case A_Resume:
goto L7 /* bound */;

}
L7: /* bound */

This call uses the following success continuation. The continuation writes the result of the call to
p then signals the end of the bounded expression.

static int P05_main() {
register struct PF00_main *rpfp;

rpfp = (struct PF00_main )pfp;
F0c_write(1, &rpfp->tend.d[0], &trashcan, (continuation)NULL);
return 7; /* bound */

}

The to operator in procedure p needs a success continuation that implements procedure suspen-
sion. Suspension is implemented by switching to the old procedure frame pointer and old argument
pointer, then calling the success continuation for the call to p. The success continuation is accessed
with the expression rpfp–>succ_cont. In this example, the continuation will only be the function
P05_main. The suspend must check the signal returned by the procedure call’s success continua-
tion. However, the code generator does not try to determine exactly what signals might be returned
by a continuation belonging to another procedure. Such a continuation may return an A_Resume
signal or a signal belonging to some procedure farther down in the call chain. In this example,
bounding signal 7 will be returned and it belongs to main.

If the call’s success continuation returns A_Resume, the procedure frame pointer and argument
pointer must be restored, and the current failure action must be executed. In this case, that action is
to return an A_Resume signal to the to operator. If the call’s success continuation returns any other
signal, that signal must be propagated back through the procedure call. The following function is
the success continuation for the to operator.

static int P03_p()
{

register int signal;
register struct PF01_p *rpfp;

rpfp = (struct PF01_p *)pfp;
deref(rpfp->rslt, rpfp->rslt);
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pfp = rpfp->old_pfp;
argp = rpfp->old_argp;

signal = (*rpfp->succ_cont)();
if (signal != A_Resume) {

return signal;
}

pfp = (struct p_frame *)rpfp;
argp = NULL;
return A_Resume;

}

The following code implements the call to the to operator. The signal handling code associated
with the call must pass along any signal from the procedure call’s success continuation. These
signals are recognized by the fact that the procedure frame for the calling procedure is still in
effect. At this point, the signal is propagated out of the procedure p. Because the procedure frame
is about to be removed from the C stack, the descriptors it contains must be removed from the
tended list.

frame.tend.d[0].dword = D_Integer;
frame.tend.d[0].vword.integr = 1;
frame.tend.d[1].dword = D_Integer;
frame.tend.d[1].vword.integr = 10;
signal = O0k_to(2, &frame.tend.d[0], rslt, P03_p);
if (pfp != (struct p_frame )&frame) {

tend = frame.tend.previous;
return signal;
}

switch (signal) {
case A_Resume:

goto L2 /* bound */;
}

L2: /* bound */

So far, this discussion has not addressed the question of how the code generator determines
what signals might be returned from a call. Because code is generated in execution order, a call
involving a success continuation is generated before the code in the continuation is generated.
This makes it difficult to know what signals might originate from the success continuation. This



335

problem exists for direct calls to a success continuation and for calls to an operation that uses a
success continuation.

The problem is solved by doing code generation in two parts. The first part produces incomplete
signal handling code. At this time, code to handle the signals produced directly by an operation is
generated. The second part of code generation is a fix-up pass that completes the signal handling
code by determining what signals might be produced by success continuations.

The code generator constructs a call graph of the continuations for a procedure. Some of these
calls are indirect calls to a continuation through an operation. However, the only effect of an oper-
ation on signals returned by a continuation is to intercept A_Resume signals. All other signals are
just passed along. This is true even if the operation is a procedure. This call graph of continuations
does not contain the procedure call graph nor does it contain continuations from other procedures.

Forward execution order imposes a partial order on continuations. A continuation only calls
continuations strictly greater in forward execution order than itself. Therefore the continuation call
graph is a DAG.

The fix-up pass is done with a bottom-up walk of the continuation call DAG. This pass deter-
mines what signals are returned by each continuation in the DAG. While processing a continuation,
the fix-up pass examines each continuation call in that continuation. At the point it processes a call,
it has determined what signals might be returned by the called continuation. It uses this information
to complete the signal handling code associated with the call and to determine what signals might
be passed along to continuations higher up the DAG. If a continuation contains code for a sus-
pend, the fix-up pass notes that the continuation may return a foreign signal belonging to another
procedure call. As explained above, foreign signals are handled by special code that checks the
procedure frame pointer.

21.3 Temporary Variable Allocation

The code generator uses the liveness information for an intermediate value when allocating a tem-
porary variable to hold the value. As explained in Chapter 16, this information consists of the
furthest program point, represented as a node in the syntax tree, through which the intermediate
value must be retained. When a temporary variable is allocated to a value, that variable is placed on
a deallocation list associated with the node beyond which its value is not needed. When the code
generator passes a node, all the temporary variables on the node’s deallocation list are deallocated.

The code generator maintains a status array for temporary variables while it is processing a
procedure. The array contains one element per temporary variable. This array is expandable,
allowing a procedure to use an arbitrary number of temporary variables. In a simple allocation
scheme, the status of a temporary variable is either free or in-use. The entry for a temporary
variable is initially marked free, it is marked in-use when the variable is allocated, and it is marked
free again when the variable is deallocated.



336

The simple scheme works well when temporary variables are allocated independently. It does
not work well when arrays of contiguous temporary variables are allocated. This occurs when
temporary variables are allocated to the arguments of a procedure invocation or any invocation
conforming to the standard calling conventions; under these circumstances, the argument list is
implemented as an array. All of the contiguous temporary variables must be reserved before the
first one is used, even though many operations may be performed before the last one is needed.
Rather than mark a temporary variable in-use before it actually is, the compiler uses the program
point where the temporary variable will be used to mark the temporary variable’s entry in the status
array as reserved. A contiguous array of temporary variables are marked reserved at the same time,
with each having a different reservation point. A reserved temporary variable may be allocated
to other intermediate values as long as it will be deallocated before the reservation point. In this
scheme, an entry in a deallocation list must include the previous status of the temporary variable as
it might be a reserved status.

The compiler allocates a contiguous subarray of temporary variables for the arguments of an
invocation when it encounters the invocation on the way down the syntax tree during its tree walk.
It uses a first-fit algorithm to find a large enough subarray that does not have a conflicting allocation.
Consider the problem of allocating temporary variables to the expression

f1(f2(f3(x, f4())), y)
where f1 can fail and f4 is a generator. The syntax tree for this expression is shown below. Note
that invocation nodes show the operation as part of the node label and not as the first operand to
general invocation. This reflects the direct invocation optimization that is usually performed on
invocations. Each node in the graph is given a numeric label. These labels increase in value in
forward execution order.

f1()
6

f2()
4

f3()
3

x
1

f4()
2

y
5

The following figure shows the operations in forward execution order with lines on the left
side of the diagram showing the lifetime of intermediate values. This represents the output of
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the liveness analysis phase of the compiler. Because f4 can be resumed by f1, the value of the
expression x has a lifetime that extends to the invocation of f1. The extended portion of the lifetime
is indicated with a dotted line.

x

f4()

f3()

f2()

y

f1()

The following series of diagrams illustrate the process of allocating intermediate values. Each
diagram includes an annotated syntax tree and a status array for temporary variables. An arrow in
the tree shows the current location of the tree walk. A deallocation list is located near the upper right
of each node. An element in the list consists of a temporary variable number and the status with
which to restore the variable’s entry in the status array. If a temporary variable has been allocated
to an intermediate value, the variable’s number appears near the lower right of the corresponding
node.

The status array is shown with four elements. The elements are initialized to F which indicates
that the temporary variables are free. A reserved temporary variable is indicated by placing the
node number of the reservation point in the corresponding element. When a temporary variable is
actually in use, the corresponding element is set to I.

Temporary variables are reserved while walking down the syntax tree. The tree illustrated
below on the left shows the state of allocation after temporary variables have been allocated for
the operands of f1. Two contiguous variables are needed. All variables are free, so the first-fit
algorithm allocates variables 0 and 1. The status array is updated to indicate that these variables are
reserved for nodes 4 and 5 respectively, and the nodes are annotated with these variable numbers.
The lifetime information in the previous figure indicates that these variables should be deallocated
after f1 is executed, so the deallocation array for node 6 is updated.

The next step is the allocation of a temporary variable to the operand of f2. The intermediate
value has a lifetime extending from node 3 to node 4. This conflicts with the allocation of variable 0,
but not the allocation of variable 1. Therefore, variable 1 is allocated to node 3 and the deallocation
list for node 4 is updated. This is illustrated in the tree on the right:
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f1()
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f2()
4

f3()
3

x
1

f4()
2

y
5

0 1 2 3
4 5 F F

{0:F , 1:F }

{ }

0

{ }

1

{ }

{ } { }

f1()
6

f2()
4

f3()
3

x
1

f4()
2

y
5

0 1 2 3
4 3 F F

{0:F , 1:F }

{1:5 }

0

{ }

1

{ }

1

{ } { }

The final allocation requires a contiguous pair of variables for nodes 1 and 2. The value from
node 1 has a lifetime that extends to node 6, and the value from node 2 has a lifetime that extends to
node 3. The current allocations for variables 0 and 1 conflict with the lifetime of the intermediate
value of node 1, so the variables 2 and 3 are used in this allocation. This is illustrated in the tree:

f1()
6

f2()
4

f3()
3

x
1

f4()
2

y
5

0 1 2 3
4 3 1 2

{0:F , 1:F , 2:F }

{1:5 }

0

{ }

1

{3:F }

1

{ }

2

{ }

3

The remaining actions of the allocator in this example mark temporary variables in-use when
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the code generator uses them and restore previous allocated statuses when temporary variables are
deallocated. This is done in the six steps illustrated in the following diagram. The annotations
on the graph do not change. Only the node of interest is shown for each step. These steps are
performed in node-number order.

x
1

{ }

2

0 1 2 3
4 3 I 2

f4()
2

{ }

3

0 1 2 3
4 3 I I

f3()
3

{3:F }

1

0 1 2 3
4 I I F

f2
4

{1:5}

0

0 1 2 3
I 5 I F

y
5

{ }

1

0 1 2 3
I I I F

f1()
6

{0:F , 1:F , 2:F }

0 1 2 3
F F F F

In general, the tree walk will alternate up and down the syntax tree. For example, if node 5 had
children, the allocation status after the deallocation associated with node 4,

0 1 2 3
I 5 I F

is used to allocate temporary variables to those children. If this requires more than four temporary
variables, the status array is extended with elements initialized to F.

This allocation algorithm is not guaranteed to produce an allocation that uses a minimal number
of temporary variables. Indeed, a smaller allocation for the previous example is illustrated in the
tree:
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f1()
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f2()
4

f3()
3

x
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f4()
2

y
51 2

2

0 1

While the non-optimality of this algorithm is unlikely to have a measurable effect on the perfor-
mance of any practical program, the problem of finding an efficient optimal solution is of theoretical
interest. Classical results in the area of register allocation do not apply. It is possible to allocate
a minimum number of registers from expression trees for conventional languages in polynomial
time [.dragon.]. The algorithm to do this depends on the fact that registers (temporary variables)
are dead as soon as the value they contain is used. This is not true for Icon temporary variables.

The result of Prabhala and Sethi stating that register allocation is NP-complete even in the pres-
ence of an infinite supply of registers also does not apply [.prabhala subexp.]. Their complexity
result derives from performing register allocation in the presence of common subexpression elim-
ination (that is, from performing register allocation on expression DAGS rather than trees) on a
2-address-instruction machine with optimality measured as the minimum number of instructions
needed to implement the program. Goal-directed evaluation imposes more structure on lifetimes
than common subexpression elimination, the machine model used here is the C language, and op-
timality is being measure as the minimum number of temporary variables needed.

The Icon temporary variable allocation problem is different from the Prolog variable allocation
problem. Prolog uses explicit variables whose lifetimes can have arbitrary overlaps even in the
absence of goal-directed evaluation. The Prolog allocation problem is equivalent to the classical
graph coloring problem which is NP-complete [.debray apr91, dragon.].

If the allocation of a subarray of temporary variables is delayed until the first one is actually
needed in the generated code, an optimum allocation results for the preceding example. It is not
obvious whether this is true for the general case of expression trees employing goal-directed eval-
uation. This problem is left for future work.

In addition to holding intermediate values, temporary variables are used as local tended vari-
ables within in-line code. This affects the pattern of allocations, but not the underlying allocation
technique.



Chapter 22

Control Flow Optimizations

22.1 Naive Code Generation

Naive code generation does not consider the effects and needs of the immediately surrounding pro-
gram. The result is often a poor use of the target language. Even sophisticated code generation
schemes that consider the effects of relatively large pieces of the program still produce poor code
at the boundaries between the pieces. This problem is typically solved by adding a peephole opti-
mizer to the compiler to improve the generated code [.peep1,Wulf,Tanenbaum peephole,dragon.].
A peephole optimizer looks at several instructions that are adjacent (in terms of execution) and tries
to replace the instructions by better, usually fewer, instructions. It typically analyzes a variety of
properties of the instructions such as addressing modes and control flow.

The Icon compiler has a peephole optimizer that works on the internal form of the generated C
code and deals only with control flow. The previous examples of generated code contain a number
of instances of code where control flow can be handled much better. For example, it is possible
to entirely eliminate the following code fragment generated for the example explaining procedure
suspension.

switch (signal) {
case A_Resume:

goto L2 /* bound */;
}

L2: /* bound */

This code is produced because the code generator does not take into account the fact that the
bounding label happens to immediately follow the test.

341
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22.2 Success Continuations

For the C code in the preceding example, it is quite possible that a C compiler would produce
machine code that its own peephole optimizer could eliminate. However, it is unlikely that a C
compiler would optimize naively generated success continuations. An earlier example of code
generation produced the continuation:

static int P02_main()
{

register struct PF00_main *rpfp;

rpfp = (struct PF00_main *)pfp;
switch (O0o_numeq(2, &(rpfp->tend.d[1]), &trashcan, (continuation)NULL)) {

case A_Continue:
break;

case A_Resume:
return A_Resume;

}
return 4; /* bound */

}

If the statement

return 4; /* bound */

is brought into the switch statement, replacing the break, then P02_main consists of a simple oper-
ation call (a C call with associated associated signal handling code). This operation call is

switch (O0o_numeq(2, &(rpfp->tend.d[1]), &trashcan, (continuation)NULL)) {
case A_Continue:

return 4; /* bound */
case A_Resume:

return A_Resume;
}

P02_main is called directly in two places in the following code.
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frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 1;
switch (P02_main()) {

case A_Resume:
goto L2 /* alt */;

case 4 /* bound */:
goto L4 /* bound */;

}
L2: /* alt */

frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 2;
switch (P02_main()) {

case A_Resume:
goto L5 /* else */;

case 4 /* bound */:
goto L4 /* bound */;

}
L4: /* bound */

A direct call to a trivial function can reasonably be replaced by the body of that function. When
this is done for a continuation, it is necessary to compose the signal handling code of the body of
a continuation with that of the call. This is accomplished by replacing each return statement in the
body with the action in the call corresponding to the signal returned. The following table illustrates
the signal handling composition for the first call in the code. The resulting code checks the signal
from O0o_numeq and performs the final action.

signal from O0o_numeq signal from P02_main final action

A_Continue 4 goto L4;

A_Resume A_Resume goto L2;

The result of in-lining P02_main is

frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 1;
switch (O0o_numeq(2, &frame.tend.d[1], &trashcan, (continuation)NULL)) {

case A_Continue:
goto L4 /* bound */;

case A_Resume:
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goto L2 /* alt */;
}

L2: /* alt */
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 2;
switch (O0o_numeq(2, &frame.tend.d[1], &trashcan,(continuation)NULL)) {

case A_Continue:
goto L4 /* bound */;

case A_Resume:
goto L5 /* else */;

}
L4: /* bound */

With a little more manipulation, the switch statements can be converted into if statements and
the label L2 can be eliminated:

frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 1;
if (O0o_numeq(2, &frame.tend.d[1], &trashcan,(continuation)NULL) == A_Continue)

goto L4 /* bound */;
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 2;
if (O0o_numeq(2, &frame.tend.d[1], &trashcan,(continuation)NULL) == A_Resume)

goto L5 /* else */;
L4: /* bound */

The Icon compiler’s peephole optimizer recognizes two kinds of trivial continuations. The kind
illustrated in the previous example consists of a single call with associated signal handling. The
other kind simply consists of a single return-signal statement. As in the above example, continua-
tions do not usually meet this definition of triviality until control flow optimizations are performed
on them. For this reason, the Icon compiler’s peephole optimizer must perform some optimizations
that could otherwise be left to the C compiler.

22.3 Iconc’s Peephole Optimizer

The peephole optimizer performs the following optimizations:

• elimination of unreachable code
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• elimination of gotos immediately preceding their destinations

• collapse of branch chains

• deletion of unused labels

• collapse of trivial call chains (that is, in-lining trivial continuations)

• deletion of unused continuations

• simplification of signal checking

Unreachable code follows a goto or a return, and it continues to the first referenced label or to
the end of the function. This optimization may eliminate code that returns signals, thereby reducing
the number of signals that must be handled by a continuation call. This provides another reason
for performing this traditional optimization in the Icon compiler rather than letting the C compiler
do it. This code is eliminated when the fix-up pass for signal handling is being performed. gotos
immediately preceding their labels also are eliminated at this time.

Unused labels usually are eliminated when the code is written out, but they may be deleted as
part of a segment of unreachable code. Unused continuations are simply not written out.

A branch chain is formed when the destination of a goto is another goto or a return. A break in
a switch statement is treated as a goto. There may be several gotos in a chain. Each goto is replaced
by the goto or return at the end of the chain. This may leave some labels unreferenced and may
leave some of the intermediate gotos unreachable. Branch chains are collapsed during the fix-up
pass.

Inter-function optimization is not traditionally considered a peephole optimization. This is
because human beings seldom write trivial functions and most code generators do not produce
continuations. The Icon compiler, however, uses calls to success continuations as freely as it uses
gotos. Therefore collapsing trivial call chains is as important as collapsing branch chains.

There are two kinds of calls to trivial continuations: direct calls and indirect calls through an
operation. A direct call always can be replaced by the body of the continuation using signal han-
dling code that is a composition of that in the continuation and that of the call. If the continuation
consists of just a return statement, this means that the call is replaced by the action associated with
the returned signal: either another return statement or a goto statement. For continuations consist-
ing of a call, the composition is more complicated, as demonstrated by the example given earlier in
this chapter.

In the case of an indirect call through an operation, the continuation cannot be placed in line.
However, there is an optimization that can be applied. Under some circumstances, the compiler
produces a continuation that simply calls another continuation. For example, this occurs when
compiling the Icon expression

every write(!x | end)
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The compiler allocates a continuation for the alternation, then compiles the expression !x. The
element generation operator suspends, so the compiler allocates a continuation for it and code gen-
eration proceeds in this continuation. However, the end of the first alternative has been reached so
the only code for this continuation is a call to the continuation for the alternation. The continuation
for the alternation contains the code for the invocation of write and for the end of the every control
structure. The code for the first alternative is

frame.tend.d[2].dword = D_Var;
frame.tend.d[2].vword.descptr = &frame.tend.d[0] /* x */;

switch (O0e_bang(1, &frame.tend.d[2], &frame.tend.d[1], P02_main)) {
case A_Resume:

goto L1 /* alt */;
}

L1: /* alt */

The code for the two continuations are

static int P02_main()
{

switch (P03_main()) {
case A_Resume:

return A_Resume;
}

}

static int P03_main()
{

register struct PF00_main *rpfp;

rpfp = (struct PF00_main *)pfp;
F0c_write(1, &rpfp->tend.d[1], &trashcan, (continuation)NULL);
return A_Resume;

}
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The call to O0e_bang can be optimized by passing the continuation P03_main in place of
P02_main.

The optimizations that collapse trivial call chains are performed during the fix-up pass for signal
handling.

The final peephole optimization involves simplifying the signal handling code associated with
a call. In general, signals are handled with a switch statement containing a case clause for each
signal. The C compiler does not know that these signals are the only values that are ever tested by
the switch statement, nor is the C compiler likely to notice that some cases simply pass along to
the next function down in the call chain the signal that was received. The Icon compiler can use
this information to optimize the signal handling beyond the level to which the C compiler is able
to optimize it. The optimizer may replace the general form of the switch statement with a switch
statement utilizing a default clause or with an if statement. In some cases, the optimizer completely
eliminates signal checking. This optimization is done when the code is written.
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Chapter 23

Optimizing Invocations

Several optimizations apply to the invocation of procedures and built-in operations. These include
optimizations resulting from the application of information from type inferencing, optimizations
resulting from the application of lifetime information to passing parameters and returning results,
and optimizations involving the generation of in-line code. There are interactions between the
optimizations in these three categories.

A primary motivation in developing the Icon compiler was to explore the optimizations that
are possible using information from type inferencing. These optimizations involve eliminating
type checking and type conversions where type inferencing indicates that they are not needed.
Dereferencing is not normally viewed as a type conversion, because variable references are not
first-class values in Icon. However, variable references occur as intermediate values and do appear
in the type system used by the Icon compiler. Therefore, from the perspective of the compiler,
dereferencing is a type conversion.

When a procedure or built-in operation is implemented as a C function conforming to the stan-
dard calling conventions of the compiler system, that function is responsible for performing any
type checking and type conversions needed by the procedure or operation. For this reason, the
checking and conversions can only be eliminated from tailored implementations.

23.1 Invocation of Procedures

As explained earlier, a procedure has one implementation: either a standard implementation or a
tailored implementation. If the compiler decides to produce a tailored implementation, the caller of
the procedure is responsible for dereferencing. When type inferencing determines that an operand
is not a variable reference, no dereferencing code is generated. Suppose p is a procedure that takes
one argument and always fails. If P01_p is the tailored C function implementing p, then it takes
one argument: a pointer to a descriptor containing the dereferenced Icon argument. Without using
type information, the call p(3) translates into

349
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frame.tend.d[0].dword = D_Integer;
frame.tend.d[0].vword.integr = 3;
deref(&frame.tend.d[0], &frame.tend.d[0]);
P01_p(&frame.tend.d[0]);

With the use of type information, the call to deref is eliminated:

frame.tend.d[0].dword = D_Integer;
frame.tend.d[0].vword.integr = 3;
P01_p(&frame.tend.d[0]);

23.2 Invocation and In-lining of Built-in Operations

Icon’s built-in operations present more opportunities for these optimizations than procedures, be-
cause they can contain type checking and conversions beyond dereferencing. Built-in operations
are treated differently than procedures. Except for keywords, there is always a C function in the
run-time library that implements the operation using the standard calling conventions. In addition,
the compiler can create several tailored in-line versions of an operation from the information in the
data base.

It is important to keep in mind that there are two levels of in-lining. An in-line version of an
operation always involves the type checking and conversions of the operation (although they may
be optimized away during the tailoring process). However, detailed code is placed in-line only if it
is specified with an inline statement in the run-time system. If the detailed code is specified with
a body statement, the “in-line” code is a function call to a routine in the run-time library. The
difference can be seen by comparing the code produced by compiling the expression ~x to that
produced by compiling the expression /x. The definition in the run-time implementation language
of cset complement is

operator{1} ~ compl(x)
if !cnv:tmp_cset(x) then

runerr(104, x)
abstract { return cset }
body {
...
}

end
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The conversion to tmp_cset is a conversion to a cset that does not use space in the block region.
Instead the cset is constructed in a temporary local buffer. The data base entry for the operation
indicates that the argument must be dereferenced. The entry has a C translation of the type conver-
sion code with a call to the support routine, cnv_tcset, to do the actual conversion. cnv_tcset takes
three arguments: a buffer, a source descriptor, and a destination descriptor. The entry in the data
base has a call to the function O160_compl in place of the body statement. This function takes as
arguments the argument and the result location of the operation. The code generator ignores the
abstract clause. The in-line code for ~x is

frame.tend.d[3].dword = D_Var;
frame.tend.d[3].vword.descptr = &frame.tend.d[0] /* x */;
deref(&frame.tend.d[3], &frame.tend.d[3]);
if (cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[3]), &(frame.tend.d[3])))

goto L1 /* then: compl */;
err_msg(104, &(frame.tend.d[3]));

L1: /* then: compl */
O160_compl(&(frame.tend.d[3]) , &frame.tend.d[2]);

The following is the definition of the “/” operator. Note that both undereferenced and derefer-
enced versions of the argument are used.

operator{0,1} / null(underef x -> dx)
abstract {

return type(x)
}

if is:null(dx) then
inline {

return x;
}

else inline {
fail;
}

end

In this operation, all detailed code is specified with inline statements. The generated code for /x
follows. Note that the order of the then and else clauses is reversed to simplify the test. L3 is the
failure label of the expression. The return is implemented as an assignment to the result location,
frame.tend.d[2], with execution falling off the end of the in-line code.
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frame.tend.d[3].dword = D_Var;
frame.tend.d[3].vword.descptr = &frame.tend.d[0] /* x */;
deref(&frame.tend.d[3], &frame.tend.d[4]);
if (frame.tend.d[4].dword == D_Null)

goto L2 /* then: null */;
goto L3 /* bound */;

L2: /* then: null */
frame.tend.d[2] = frame.tend.d[3];

If type inferencing determines a unique type for x in each of these expressions, the type checking
is eliminated from the code. Suppose type inferencing determines that x can only be of type cset in
the expression

a := ~x

If parameter passing and assignment optimizations (these are explained below) are combined with
the elimination of type checking, the resulting code is

O160_compl(&(frame.tend.d[0] /* x */), &frame.tend.d[1] /* a */);

The form of this translated code meets the goals of the compiler design for the invocation of a com-
plicated operation: a simple call to a type-specific C function with minimum parameter passing.
The implementation language for run-time operations requires that type conversions be specified in
the control clause of an if statement. However, some conversions, such as converting a string to a
cset, are guaranteed to succeed. If the code generator recognizes one of these conversions, it elimi-
nates the if statement. The only code generated is the conversion and the code to be executed when
the conversion succeeds. Suppose type inferencing determines that x in the preceding example can
only be a string. Then the generated code for the example is

frame.tend.d[2] = frame.tend.d[0] /* x */;
cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[2]), &(frame.tend.d[2]));
O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] / a /);

23.3 Heuristic for Deciding to In-line

The in-line code for the operators shown so far in the section is relatively small. However, the
untailored in-line code for operations like the element generation operator, !, is large. If tailoring
the code does not produce a large reduction in size, it is better to generate a call to the C function in
the run-time library that uses the standard calling conventions. A heuristic is needed for deciding
when to use in-line code and when to call the standard C function.
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A simple heuristic is to use in-line code only when all type checking and conversions can be
eliminated. However, this precludes the generation of in-lining code in some important situations.
The operator / is used to direct control flow. It should always be used with an operand whose
type can vary at run time, and the generated code should always be in-lined. Consider the Icon
expression

if /x then x := ""

The compiler applies parameter-passing optimizations to the sub-expression /x. It also eliminates
the return value of the operator, because the value is discarded. An implementation convention
for operations allows the compiler to discard the expression that computes the return value. The
convention requires that a return expression of an operation not contain user-visible side effects
(storage allocation is an exception to the rule; it is visible, but the language makes no guarantees as
to when it will occur). The code for /x is reduced to a simple type check. The code generated for
the if expression is

if ((frame.tend.d[0] /* x */).dword == D_Null)
goto L2 /* bound */;

goto L3 /* bound */;
L2: /* bound */

frame.tend.d[0] /* x */.vword.sptr = ;
frame.tend.d[0] /* x */.dword = 0;

L3: /* bound */

To accommodate expressions like those in the preceding example, the heuristic used in the
compiler is to produce tailored in-line code when that code contains no more than one type check.
Only conversions retaining their if statements are counted as a type checks. This simple heuristic
produces reasonable code. Future work includes examining more sophisticated heuristics.

23.4 In-lining Success Continuations

Suspension in in-line code provides further opportunity for optimization. In general, suspension is
implemented as a call to a success continuation. However, if there is only one call to the continu-
ation, it is better not to put the code in a continuation. The code should be generated at the site of
the suspension. Consider the expression

every p(1 to 10)

The implementation of the to operator is
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operator{*} ... to(from, to)
/*
* arguments must be integers.
*/

if !cnv:C_integer(from) then
runerr(101, from)

if !cnv:C_integer(to) then
runerr(101, to)

abstract {
return integer
}

inline {
for ( ; from <= to; ++from) {

suspend C_integer from;
}

fail;
}

end

The arguments are known to be integers, so the tailored version consists of just the code in the
inline statement. The for statement is converted to gotos and conditional gotos, so the control flow
optimizer can handle it (this conversion is done by rtt before putting the code in the data base). The
suspend is translated into code to set the result value and a failure label used for the code of the
rest of the bounded expression. This code is generated before the label and consists of a call to the
procedure p and the failure introduced by the every expression. The generated code follows. The
failure for the every expression is translated into goto L4, where L4 is the failure label introduced
by the suspend. The control flow optimizer removes both the goto and the label. They are retained
here to elucidate the code generation process.

frame.tend.d[1].dword = D_Integer;
frame.tend.d[1].vword.integr = 1;
frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 10;

L1: /* within: to */
if (!(frame.tend.d[1].vword.integr <= frame.tend.d[2].vword.integr) )

goto L2 /* bound */;
frame.tend.d[0].vword.integr = frame.tend.d[1].vword.integr;
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frame.tend.d[0].dword = D_Integer;
P01_p(&frame.tend.d[0]);
goto L4 /* end suspend: to */;

L4: /* end suspend: to */
++frame.tend.d[1].vword.integr;
goto L1 /* within: to */;

L2: /* bound */

This is an example of a generator within an every expression being converted into an in-line
loop. Except for the fact that descriptors are being used instead of C integers, this is nearly as good
as the C code

for (i = 1; i <= 10; ++i)
p(i);

23.5 Parameter Passing Optimizations

As mentioned above, parameter-passing optimizations are used to improved the generated code.
These optimizations involve eliminating unneeded argument computations and eliminating unnec-
essary copying. These optimizations are applied to tailored in-line code. They must take into
account how a parameter is used and whether the corresponding argument value has an extended
lifetime.

In some situations, a parameter is not used in the tailored code. There are two common circum-
stances in which this happens. One is for the first operand of conjunction. The other occurs with
a polymorphous operation that has a type-specific optional parameter. If a different type is being
operated on, the optional parameter is not referenced in the tailored code. If a tailored operation
has an unreferenced parameter and the invocation has a corresponding argument expression, the
compiler notes that the expression result is discarded. Earlier in this chapter there are examples
of optimizations possible when expression results are discarded. If the corresponding argument is
missing, the compiler refrains from supplying a null value for it. Consider the invocation

insert(x, 3)

insert takes three arguments. If x is a table, the third argument is used as the entry value and must
be supplied in the generated code. In the following generated code, the default value for the third
argument is computed into frame.tend.d[2].dword:
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frame.tend.d[1].dword = D_Integer;
frame.tend.d[1].vword.integr = 3;
frame.tend.d[2].dword = D_Null;
frame.tend.d[3] = frame.tend.d[0] /* x */;
F1o0_insert(&(frame.tend.d[2]), &(frame.tend.d[1]), &(frame.tend.d[3]),

&trashcan);

Because F1o0_insert uses a tailored calling convention, its arguments can be in a different order
from those of the Icon function. It appears that the argument expression x is computed in the wrong
place in the execution order. However, this is not true; the expression is not computed at all. If
it were, the result would be a variable reference. Instead, the assignment of the value in x to the
temporary variable is a form of optimized dereferencing. Therefore, it must be done as part of the
operation, not as part of the argument computations. This is explained below.

If the value of x in this expression is a set instead of a table, the entry value is not used. This is
illustrated by the following code. Note that a different C function is called for a set than for a table;
this is because a different body statement is selected.

frame.tend.d[1].dword = D_Integer;
frame.tend.d[1].vword.integr = 3;
frame.tend.d[2] = frame.tend.d[0] /* x */;
F1o1_insert(&(frame.tend.d[1]) , &(frame.tend.d[2]) , &trashcan);

In general, an operation must copy its argument to a new descriptor before using it. This is
because an operation is allowed to modify the argument. Modification of the original argument
location is not safe in the presence of goal-directed evaluation. The operation could be re-executed
without recomputing the argument. Therefore, the original value must be available. This is demon-
strated with the following expression.

every p(0 to (1 to 3))

This is a double loop. The outer to expression is the inner loop, while the inner to expression is the
outer loop. to modifies its first argument while counting. However, the first argument to the outer
to has an extended lifetime due to the fact that the second argument is a generator. Therefore, this
to operator must make a copy of its first argument. The generated code for this every expression is

frame.tend.d[2].dword = D_Integer;
frame.tend.d[2].vword.integr = 0;
frame.tend.d[4].dword = D_Integer;
frame.tend.d[4].vword.integr = 1;
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frame.tend.d[5].dword = D_Integer;
frame.tend.d[5].vword.integr = 3;

L1: /* within: to */
if (!(frame.tend.d[4].vword.integr <= frame.tend.d[5].vword.integr))

goto L2 /* bound */;
frame.tend.d[3].vword.integr = frame.tend.d[4].vword.integr;
frame.tend.d[3].dword = D_Integer;
frame.tend.d[6] = frame.tend.d[2];

L3: /* within: to */
if (!(frame.tend.d[6].vword.integr <= frame.tend.d[3].vword.integr))

goto L4 /* end suspend: to */;
frame.tend.d[1].vword.integr = frame.tend.d[6].vword.integr;
frame.tend.d[1].dword = D_Integer;
P01_p(&frame.tend.d[1]);
++frame.tend.d[6].vword.integr;
goto L3 /* within: to */;

L4: /* end suspend: to */
++frame.tend.d[4].vword.integr;
goto L1 /* within: to */;

L2: /* bound */

The first argument to the outer to is copied with the statement

frame.tend.d[6] = frame.tend.d[2];

The copying of the other arguments has been eliminated because of two observations: the second
argument of to is never modified and the first argument of the inner to (outer loop) is never reused
without being recomputed. This second fact is determined while the lifetime information is being
calculated. There is no generator occurring between the computation of the argument and the
execution of the operator. Even if there were, it would only necessitate copying if the generator
could be resumed after the operator started executing.

As noted above, another set of optimizations involves deferencing named variables. If an op-
eration needs only the dereferenced value of an argument and type inferencing determines that the
argument is a specific named variable (recall that each named variable is given a distinct variable
reference type), the code generator does not need to generate code to compute the variable ref-
erence, because it knows what it is. That is, it does not need the value of the argument. If the
argument is a simple identifier, no code at all is generated for the argument.

As shown in the code presented above for

insert(x, 3)

dereferencing can be implemented as simple assignment rather than a call to the deref function:
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frame.tend.d[3] = frame.tend.d[0] /* x */;

In fact, unless certain conditions interfere, the variable can be used directly as the argument de-
scriptor and no copying is needed. This is reflected in the code generated in a previous example:

if /x then ...

x is used directly in the in-line code for /:

if ((frame.tend.d[0] /* x */).dword == D_Null)
goto L2 /* bound */;

This optimization cannot be performed if the operation modifies the argument, nor can it be per-
formed if the variable’s value might change while the operation is executing. Performing the opti-
mization in the presence of the second condition would violate the semantics of argument derefer-
encing. The compiler does two simple tests to determine if the second condition might be true. If
the operation has a side effect, the compiler assumes that the side-effect might involve the named
variable. Side effects are explicitly coded in the abstract type computations of the operation. The
second test is to see if the argument has an extended lifetime. The compiler assumes that the
variable might be changed by another operation during the extended lifetime (that is, while the
operation is suspended).

23.6 Assignment Optimizations

The final set of invocation optimizations involves assignments to named variables. These includes
simple assignment and augmented assignments. Optimizing these assignments is important and
optimizations are possible beyond those that can easily be done working from the definition in
the data base; assignments to named variables are treated as special cases. The optimizations are
divided into the cases where the right-hand-side might produce a variable reference and those where
it produces a simple Icon value.

There are two cases when the right-hand-side of the assignment evaluates to a variable refer-
ence. If the right-hand-side is a named variable, a dereferencing optimization can be used. Consider

s := s1

This Icon expression is translated into

frame.tend.d[0] /* s */ = frame.tend.d[1] /* s1 */;

This is the ideal translation of this expression. For other situations, the deref function must be used.
For example the expression

s := ?x

is translated into



359

if (O0f2_random(&(frame.tend.d[0] /* x */), &frame.tend.d[2]) == A_Resume)
goto L1 /* bound */;

deref(&frame.tend.d[2], &frame.tend.d[1] /* s */);

When the right-hand-side computes to a simple Icon value, the named variable on the left-
hand-side can often be used directly as the result location of the operation. This occurs in the
earlier example

a := ~x

which translates into

O160_compl(&(frame.tend.d[0] /* x */), &frame.tend.d[1] /* a */);

This optimization is safe as long as setting the result location is the last thing the operation
does. If the operation uses the result location as a work area and the variable were used as the
result location, the operation might see the premature change to the variable. In this case, a sep-
arate result location must be allocated and the Icon assignment implemented as a C assignment.
String concatenation is an example of an operation that uses its result location as a work area. The
expression

s := s1 || s

is translated into

if (StrLoc(frame.tend.d[1] /* s1 */) + StrLen(frame.tend.d[1] /* s1 */)
== strfree )
goto L1 /* within: cater */;

StrLoc(frame.tend.d[2]) = alcstr(StrLoc(frame.tend.d[1] /* s1 */),
StrLen(frame.tend.d[1] /* s1 */));

StrLen(frame.tend.d[2]) = StrLen(frame.tend.d[1] /* s1 */);
goto L2 /* within: cater */;

L1: /* within: cater */
frame.tend.d[2] = frame.tend.d[1] /* s1 */;

L2: /* within: cater */
alcstr(StrLoc(frame.tend.d[0] /* s */), StrLen(frame.tend.d[0] /* s */));
StrLen(frame.tend.d[2]) = StrLen(frame.tend.d[1] /* s1 */) +

StrLen(frame.tend.d[0] /* s */);

frame.tend.d[0] /* s */ = frame.tend.d[2];
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frame.tend.d[2] is the result location. If frame.tend.d[0] (the variable s) were used instead, the code
would be wrong.

There are still some optimizations falling under the category covered by this chapter to be
explored as future work. For example, as shown earlier,

a := ~x

is translated into

frame.tend.d[2] = frame.tend.d[0] /* x */;
cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[2]), &(frame.tend.d[2]));
O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

when x is a string. The assignment to frame.tend.d[2] can be combined with the conversion to
produce the code

cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[0] /* x */), &(frame.tend.d[2]));
O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

There is, of course, always room for improvement in code generation for specific cases. How-
ever, the optimizations in this chapter combine to produce good code for most expressions. This is
reflected in the performance data presented in Chapter 23.



Chapter 24

Performance of Compiled Code

The performance of compiled code is affected by the various optimizations performed by the com-
piler. This chapter demonstrates the effects of these optimizations on the execution speed of Icon
expressions. It also presents speed improvements and memory usage for compiled code versus
interpreted code for a set of complete Icon programs. All timing results used in this chapter were
obtained on a Sun 4/490 and are the average of the results from three runs.

24.1 Expression Optimizations

The effects of four categories of optimization are demonstrated. These are assignment optimiza-
tions, invocation optimizations, control flow optimizations, and optimizations using information
from type inferencing. Expression timings for the first three categories were made using tech-
niques described in the August 1990 issue of The Icon Analyst [.ianl1.]. The following program
skeleton is used to construct the programs to perform these timings.

procedure main()
local x, start, overhead, iters
iters := 1000000
start := &time
every 1 to iters do {

}
overhead := &time - start
x := 0
start := &time
every 1 to iters do {

expression to be timed (may use x)
}

write(&time - start - overhead)
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end

The timings are performed both with and without the desired optimizations, and the results are
compared by computing the ratio of the time without optimization to the time with optimization.

The assignment optimizations are described in Chapter 22. The effect of the assignment opti-
mizations on the expression

x := &null

is measured using the program outlined above. The analysis that produces the assignment opti-
mization is disabled by enabling debugging features in the generated code. The only other effect
this has on the assignment expression is to insert code to update the line number of the expression
being executed. In this test, the line number code is removed before the C code is compiled, in-
suring that the assignment optimization is the only thing measured. The timing results for this test
produce

Assignment Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

1122 478 2.3

The tests were performed with type inferencing enabled. Therefore, even the "unoptimized"
version of the assignment has the standard operation optimizations applied to it. This test demon-
strates the importance of performing the special-case assignment optimizations.

The next category of optimization measured is invocation optimization. This results in the direct
invocation of the C functions implementing operations, or in some cases results in the operations
being generated in line. The execution time for the expression

tab(0)

is measured with and without invocation optimizations. As with the assignment optimizations,
these optimizations are disabled by enabling debugging features. Once again the line number code
is removed before the C code is compiled. These optimizations interact with the optimizations that
use information from type inferencing. The measurements are made with type inferencing disabled.
Therefore, no type checking simplifications are performed. Without the invocation optimizations,
the generated code consists of an indirect invocation through the global variable tab. With the
invocation optimizations, the generated code consists of type checking/conversion code for the
argument to tab and a call to the function implementing the body statement of tab. The timing
results for tab(0) produce
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Invocation Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

8394 4321 1.9

The third category of optimization is control flow optimization. As explained in Chapter 21,
these optimizations only perform improvements that a C compiler will not perform when the code
contains trivial call chains. One situation that produces trivial call chains is nested alternation. The
execution time for the expression

every x := ixor(x, 1 | 2 | 3 | 4 | 5)
is measured with and without control flow optimizations. The timing results for this every loop
produce

Control Flow Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

6384 4184 1.5

The final category of optimization results from type inferencing. The speed improvements result
from generating operations in line, eliminating type checking, and generating success continuations
in line. Use of the to operation is a good example of where these optimizations can be applied. This
is demonstrated by measuring the speed of an every loop using the to operation. The program that
performs the measurement is

procedure main()
local x, start
start := &time
every x := 1 to 5000000
write(&time - start)

end

The timing results for this program produce

Type Inference Test

Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

9233 2721 3.3
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Another approach to determining the effectiveness of type inferencing is to measure how small
a set it deduces for the possible types of operands to operations. This indicates whether future
work should concentrate on improving type inferencing itself or simply concentrate on using type
information more effectively in code generation. A simple measure is used here: the percentage
of operands for which type inferencing deduces a unique Icon type. Measurements are made for
operands of all operators, except optimized assignment, and for operands of all built-in functions
appearing in optimized invocations. For the most part, these are the operations where the code
generator can use type information. Measurements were made for a set of 14 programs (described
below). Unique operand types within each program range from 63 percent to 100 percent of all
operands, with an overall figure for the tests suite of 80 percent (this is a straight unweighted
figure obtained by considering all operands in the test suite without regard to what program they
belong to); even a perfect type inferencing system will not deduce unique types for 100 percent
of all operands, because not all operands have unique types. This suggests that an improved type
inferencing system may benefit some programs, but will have only a small overall impact. Future
work should give priority to making better use of the type information rather than to increasing the
accuracy of type inferencing.

24.2 Program Execution Speed

It has been demonstrated that the compiler optimizations are effective at improving the kinds of
expressions they are directed toward. The question remains: How fast is compiled code (with and
without optimizations) for complete programs as compared to interpreted code for the same pro-
grams? For some expressions, optimizations may interact to create significant cumulative speed
improvements. For example, the fully optimized code for the every loop in the previous example is
30 times faster than the interpreted code; the improvement of 3.3 from type inferencing contributes
one factor in the total improvement. Other expressions may spend so much time in the run-time
system (which is unaffected by compiler optimizations) that no measurable improvements are pro-
duced.

A set of 14 programs was selected mostly from contributions to the Icon program library [.tr90-
7.] for testing the performance of the compiler. These programs were selected to represent a variety
of applications and programming styles (an additional requirement is that they run long enough to
obtain good timing results).

The following table shows the speed improvements for the compiled code as compared to in-
terpreted code. The compiler and interpreter used for the measurements both implement Version
8 of Icon. The execution time used to compute the speed improvements is the cpu time measured
using the Bourne shell’s time command. The first column in the table shows the execution time
under the interpreter. The second column is for compiled code with debugging features enabled and
optimizations disabled. This code is still better than what would be obtained by just removing the
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interpreter loop, because intelligent code generation is performed, especially for bounded expres-
sions, and keywords are generated in line. The third column is for code with debugging features
disabled and full optimization enabled.
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Execution Time in Seconds Averaged over Three Runs

Compiler Compiler

Program Interpreter Unoptimised Optimized

cksol 49.9 33.5 (1.48) 22.5 (2.21)

concord 31.1 18.5 (1.68) 9.8 (3.17)

iidecode 60.3 34.0 (1.77) 12.9 (4.67)

iiencode 50.4 34.4 (1.46) 10.5 (4.80)

impress 44.6 24.8 (1.79) 14.0 (3.18)

list 43.1 24.5 (1.75) 13.6 (3.16)

memfiltr 60.8 34.3 (1.77) 15.3 (3.97)

mf 30.1 18.7 (1.60) 14.7 (2.04)

pssplit 64.0 39.0 (1.64) 26.6 (2.40)

roffcmds 32.9 18.1 (1.81) 12.0 (2.74)

sentence 34.3 23.9 (1.43) 16.2 (2.11)

spandex 36.8 23.3 (1.57) 14.7 (2.50)

textcnt 36.2 18.4 (1.96) 9.9 (3.65)

wrapper 27.3 15.9 (1.71) 9.4 (2.90)

The numbers in parentheses are speed-up factors obtained by dividing the interpreter execution
time by the execution time of compiled code.

24.3 Code Size

One advantage the compiler has over the interpreter is that, unless a program is compiled with full
string invocation enabled, the executable code for a program need not include the full run-time
system. For systems with limited memory, this can be a significant advantage.

The sizes of executable code presented here are obtained from file sizes. All executable files
have had debugging information stripped from them. The size of the executable code in the inter-
preter system is taken to be the size of the interpreter (278,528 bytes) plus the size of the icode
for the program being measured (under Unix systems, the size of the executable header, 12,800
bytes for the Sun 4, is subtracted from the size of the icode file, because it is not present during
interpretation). Measurements for the 14 test programs are:
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Program Sizes in Bytes

Program Interpreter Compiler Ratio

cksol 282,153 81,920 0.29

concord 284,416 90,112 0.31

iidecode 285,525 98,304 0.34

iiencode 283,567 81,920 0.28

impress 295,656 114,688 0.38

list 287,376 98,304 0.34

memfiltr 296,082 114,688 0.38

mf 282,739 81,920 0.28

pssplit 279,709 73,728 0.26

roffcmds 280,797 81,920 0.29

sentence 283,249 81,920 0.28

spandex 281,843 81,920 0.29

textcnt 280,397 73,728 0.26

wrapper 279,780 73,728 0.26

Other factors create differences in memory usage between the interpreter and compiled code.
For example, the interpreter allocates a stack for expression evaluation. On the Sun 4, this stack is
40,000 bytes. The compiler, on the other hand, allocates work areas on a per-procedure basis and
only allocates the maximum needed at any execution point within the procedure.
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Chapter 25

Scalable Type Inferencing

Authors: Michael Wilder, Anthony Jones and Clinton Jeffery

This chapter details compile-time space savings in iconc that enable it to handle large Unicon
programs. The Icon compiler represents all the possible types as a bit vector with each bit position
representing a specific type. Such vectors are required for each variable including each temporary
variable location as a result of subexpression evaluation. The type inferencing model allocates a
unique type to each source location at which heterogeneous structure types such as lists or records
are created. In the course of compiling a large program, the number of total types, and therefore
the size of the bit vectors, can skyrocket. According to Walker [Walker93], the type inferencer
described in Chapters 15 and 19 has a space cost of O(n3). The associated constants, and the value
of n, may be large. Improving the memory usage of iconc’s type inferencing system was necessary
because the compiler was empirically observed to run out of memory compiling large programs.

At the time it was developed, iconc was able to compile small to medium size Icon programs.
Although main memories in typical computers have increased from 4MB to 4GB in the years since
iconc was developed, Unicon programs can be much larger than Icon programs. Likewise, heavily
object-oriented programs, such as ones with graphical user interfaces, are especially demanding
for the type inferencer, as they introduce large numbers of new types. For these reasons, the space
needed for type inferencing was a problem that demanded attention and limited the applicability of
the optimizing compiler.

In 1996 Anthony Jones introduced compact representations that reduced space requirements
by approximately a factor of 3 [Jones96], providing enough relief to allow iconc to compile some
larger programs of the time. These improvements were subsumed a decade later by the work de-
scribed in this chapter. After realizing that type information was frequently duplicated, a type
vector hashing scheme was introduced by which almost all redundant allocations of type informa-
tion were avoided. This work effectively solved the memory space scalability problem for type
inferencing.

369
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25.1 The Type Representation

One way to reduce space requirements is to optimize the representation of type information. Iconc
maintains a structure for each variable that contains information about that variable, including a
bit vector with each bit representing a particular type used in the program. When a bit vector is
allocated it is one of three possible sizes. The first size is composed of first class types which are
those built in types plus user defined types that are utilized. The second size consists of the first
class types plus intermediate value types. Lastly, there is the number of total types in the database.
The database refers to the collection of all builtin operations, their number of parameters and types,
and the type for the return value.

Data was gathered from Ctree, a circular tree visualization tool. This program consists of ˜500
lines of source code. The number of possible first class types is 209 which translates to a 28 byte
bit vector. Note that bit vectors are allocated in multiples of a word (4 bytes). During the course
of the compilation, 137,946 bit vectors are allocated. The number of first class types plus types for
intermediate values is 1,012, resulting in a 128 byte bit vector, and 18,925 vectors of this size are
allocated. Lastly, the number of database types is 1,369 types, using a 172 byte bit vector with only
121 allocations of this size. The total memory requirement for the bit vectors is 6.22 megabytes.
This information is summarized in Figure 24-1.

Vector Type Number of Types Number Allocated Required Memory (MB)

first class 209 137946 3.8

intermediate class 1012 18925 2.4

database class 1369 121 0.02

Figure 24-1: Bit Vector Sizes
Figure 24-2 is an example of what a bit vector from Ctree might look like. This example shows

the division between the three type classes. Within the partition for first class types is bit 0 which
represents an integer and bit 6 which is a real. Within the intermediate types partition, bit 209
represents an instance of a cnode record and an instance of a list variable, and bit 232 is an instance
of a variable that is of the list type. Every instance of a list or an aggregate type such as a record
results in a new type that gets its own bit in the bit vector.

Lastly, within the database class are builtin operations. The functions for random number
(O0z7_random) and subtraction (O114_subc) are assigned bits 1,012 and 1,368 respectively. The
functions are builtin to the Icon compiler and are assigned their own types in the bit vector.
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Figure 24-2: Sample Bit Vector

Additional tests were run on a 25,000 line Icon (really Idol) program called Freedom in the
Galaxy, which was a semester long effort by Dr. Jeffery’s Software Engineering class. The program
has hundreds of variables, but object-orientation requires many additional intermediate variables
and dramatically increases the number and size of type vectors allocated during compilation. Free-
dom in the Galaxy has 12,591 different distinct types including builtin, intermediate, and database
types. This is an example of a program that ran out of memory during compilation with iconc on
typical workstations in the mid-1990’s, motivating space improvements.

25.2 Type Vector Hashing

Type inferencing in iconc uses collections of large bit vectors that are frequently referenced. The bit
vectors represent sets of possible types at each program point. This section presents an incremental
technique that dramatically reduces the space required for these bit vectors. The technique depends
on a classic data structure: the hash table.

Hash tables are used in many different application domains to map keys (usually small) onto
(often much larger) values. In their degenerate form, hash tables can be used to store a set of keys,
with no associated values. Such sets may be needed for purposes of memory sharing, as in the
Flyweight design pattern. The traditional hash table O(1) average case lookup and insert speeds
break down when the keys are very large (for example, hundreds of machine words) and heavily
referenced (many millions or billions of lookups). In such circumstances, it is imperative to identify
a fast hash function that performs well despite the large data keys to be hashed.

25.3 Type Inferencing

As mentioned previously, iconc’s type inferencer originally required O(n2) space on average and
O(n3) in the worst case, where n corresponds to program size (as a number of expressions, not
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bytes or lines of code). The inferencer allocated large bit vectors at every (sub)expression point in a
program where typed values are transmitted. This algorithm runs acceptably for small and medium
size programs, but fails for large programs. For example, in one of the test programs, the brute force
algorithm attempted to malloc() 24GB of memory, exceeding the capacity of the test machine. By
the time such allocations are easily supported on most computers, larger Unicon programs will
be written for which even more space will be needed. Type inferencing space requirements are
exacerbated in object-oriented programs which may utilize many hundreds of user-defined types
for classes and their method vectors.

25.4 A Copy-on-Write Type Vector Pool

Analysis revealed much redundancy among type vectors associated with type-mutable program
points when inferring the types in programs. Hashing was introduced to eliminate type vector
redundancy by employing copy-on-write semantics in a type vector pool. Using a hash table to
implement a shared pool of bit vectors largely solves the space problem, reducing space needs to
O(n) on average and O(n2) in the worst case, at a potentially large cost in time. If the time constants
involved increase the real-world time to an impractical extent, then the use of hashing fails despite
its successful space reduction.

The hashing of type vectors in the type inferencer poses many challenges. The width of type
vectors varies with the number of run-time types present in an input program. Type vectors in the
type inferencer can be quite large because the run-time type information produced is of very high
quality. For example, in addition to bits for all the base types and declared record or class types,
the bit vector also must contain bits for each field (or member variable) of each class or record.
The type inferencer also uses a separate bit in the vector to differentiate each constructor site for
composite types (such as lists). A list containing strings, for instance, is assigned a different type
than a list containing records or a list containing strings and records. This fine granularity of type
information contributes admirably to the speedup of targets generated by the Unicon Compiler, but
causes type vectors to become very large during type inferencing.

The number of vectors required for type inferencing depends upon the number of type-mutable
program points in the dataflow graph of the input program. Some programs have many possible
types, but contain relatively few type-mutable program points; other programs contain relatively
few run-time types but have many type-mutable program points. And, of course, some programs
contain many type-mutable program points and many possible run-time types. These variables
exacerbate the requirements imposed upon a type vector hashing scheme. To add further interest,
analysis of the bit patterns held in non-redundant type vectors within the type inferencer at compile-
time revealed no reliable lever of disparity that could be employed as a collision reductive agent in
a type vector hashing scheme.
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25.5 Implementation

Implementation began with a software harness to permit the direct comparison of various hashing
techniques within the specific confines of the Unicon Compiler type inferencer. Experimentation
produced a fixed-address, multiplicative hashing scheme wherein the number of buckets in the hash
table is a variant power of 2 greater than 255. This number varies depending upon characteristics
of the input program ascertained before the start of type inferencing.

Type vectors are allocated from a pool of vectors that serves as the vector store during type
inferencing. The size of this pool also varies depending upon characteristics of the input program
ascertained before the start of type inferencing. The pool of vectors contained in the Unicon Com-
piler type inferencer is a discrete entity that is not accessed directly by the type vector hash table.
This separation facilitates experimentation with different pooling algorithms and implementations
without modifying the type vector hash table implementation. All pools in the Unicon Compiler
type inferencer are implemented in this manner.

The vector hash table implementation in the Unicon Compiler does not permit the migration
of type vectors among buckets in the hash table. Once a type vector is inserted into a hash table
bucket, it remains in situ for the duration of type inferencing. Reference counts are not maintained
for type vectors contained within the hash table because any type vector in the system (except one)
is created as the result of a transformation applied to another type vector that already exists within
the type vector hash table.

A tremendous savings of space during type inferencing was immediately realized by eliminat-
ing type vector redundancy through hashing. The initial space reductions obtained were compa-
rable to those indicated in Section 5. Although adding a hash table increases the complexity and
likewise increases the number of instructions required for type vector generation, eliminating type
vector redundancy provided a speedup of some vector manipulation operations because we were
able to employ reference-based vector equality comparisons where value-based comparisons were
previously required.

25.5.1 Bit Vector Hashing

An early version of the vector hashing function employed in the Unicon Compiler type inferencer
is depicted in Figure 24-6. Subsequent analysis and refinement of our hashing scheme produced a
much faster method than this straightforward approach.

00. static
01. inline
02. unsigned int
03. hash(bits)
04. unsigned int * bits;
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05. {
06. int i;
07. unsigned long long rawhash, xor;
08. unsigned int cookedhash;
09.
10. rawhash = xor = 0ULL;
11. i = n_rttyp_ints - 1;
12. while (i >= 0) {
13. rawhash += xor;
14. rawhash += bits[i];
15. xor ˆ= bits[i];
16. i--;
17. }
18. rawhash *= 0x20c49ba5e353f7cfULL;
19. i = hash_shifts;
20. cookedhash = rawhash & hash_mask;
21. while (i) {
22. rawhash >>= hash_upper_shr;
23. cookedhash ˆ= rawhash;
24. i--;
25. }
26. return (cookedhash & hash_mask);
27. }

Figure 24-6: Hashing before halving
In function hash(), the cumulative xor is used to perturb the raw hash value. The variable

n_rttyp_ints is the size of array in words; hash_shifts is the word size divided by the bucket size,
and is used in order to ensure that the entire hash number is involved in bucket selection. The hex
constant was derived experimentally to maximize distribution on a wide range of input bit vectors.

Having achieved a dramatic space reduction, the next step was to refine the hashing and pooling
algorithms to improve the speed of type vector creation and retrieval during type inferencing.

25.5.2 Hash Halving

It is not uncommon to encounter type vectors that are well over 100 machine words wide when
inferring the types of large programs. Locality is a major performance impediment when hashing
type vectors in programs of this nature. The techniques described in this section were devised to
improve the speed of type inferencing in the Unicon Compiler.

The hashing routine depicted in Figure 24-6 was employed in early space-reduction experiments
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with the Unicon Compiler type inferencer. This hashing routine traverses the entire length of a
type vector in order to compute its hash value. This conservative approach makes use of all the
information contained within the bits of a type vector, but it becomes problematic when type vectors
are hundreds of machine words wide and the hashing routine is invoked hundreds of millions of
times during type inferencing. Approaches in which the hash function considers only a portion of
the information in a type vector would hash faster, at the expense of more collisions. Instead, we
conducted experiments to reduce the time required to compute the hash value of full type vectors.
This experimentation produced a technique referred to as hash halving.

Hash halving permits the hashing of arbitrarily wide type vectors without traversing said vec-
tors. To accomplish this, the hashing routine is split into a top half routine and bottom half routine.
The top half routine performs a full traversal of a given type vector in order to produce a “raw” hash
value for the vector. The bottom half routine is a scrambling function that transforms the raw hash
value produced by the top half into a “cooked” hash value for the vector. Referring to the hashing
routine in Figure 1, lines 10-17 constitute the top half and lines 18-26 constitute the bottom half of
this routine. In a conventional hashing scheme, computing the hash value of a type vector would
entail invoking the top half and bottom half hashing routines. The Unicon Compiler type inferencer
does not do this.

It is immediately apparent that the bottom half of the hashing routine in Figure 24-6 is com-
putationally much less expensive than the top half when type vectors are very wide. Lines 10-17
are executed in time proportional to the width of the type vector being hashed, which in the worst
case is O(n). Lines 18-26, on the other hand, are O(1) because the value of hash_shifts will never
be larger than the width of a “raw” hash value. If, for instance, a raw hash value is represented
in 64 bits and the hash table contains 256 buckets, the value of hash_shifts is initialized to 7 at
the start of type inferencing. The intuition behind hash halving is to circumvent the computational
expense of the top half whenever possible, thereby reducing the O(n) cost of the top half to an O(1)
incremental cost whenever a type vector is modified. In the Unicon Compiler type inferencer, this
is facilitated by the fact that all type vectors instantiated during type inferencing are descendants of
a single type vector called the genesis vector.

At the start of type inferencing in the Unicon Compiler, there exists a single type vector in the
system. This genesis vector represents the union of all types permissible in the input program.
All type-mutable program points in the dataflow graph of the input program initially refer to this
genesis vector because reference-based semantics are used and no refinement of information about
the types at said program points has yet been accomplished. When the genesis vector is created at
the start of type inferencing, the raw (top half) hash value for this vector is computed and stored
as a datum with the vector. Any subsequent vectors produced as a result of some transformation
of this genesis vector use the raw hash value stored in the genesis vector to compute what the raw
hash value of the potentially new type vector would be, based upon the transformation applied to
the genesis vector. This computation occurs without any knowledge of the actual content of the
genesis vector.
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The raw hash value associated with a type vector in the Unicon Compiler type inferencer is a
simple summation (see Figure 24-7). This summation facilitates incrementality by permitting fast
updating of the raw hash value of a vector when attempting to determine the raw hash value for a
potentially new type vector.

For example, assume that some type-mutable program point contains a reference to the genesis
vector V G. In the event that the type inferencer wants to apply transform t1 to VG, it is desirable
to determine whether the result of this transformation (V1) is already a member of the vector hash
table without performing a full hash of V1. The Unicon Compiler type inferencer accomplishes
this as follows.

The raw hash value of VG is copied into a temporary vector. This raw hash value is then
transformed in place based upon the nature of the transform t1 to produce the raw hash value of the
subject vector V1. This circumvents a call to the top half hashing routine. The type inferencer then
invokes the bottom half hashing routine to transform the raw hash value of V1 into the cooked hash
value of V1. If the vector hash table bucket corresponding to the cooked hash value of V1 is empty,
V1 of course does not exist in the hash table. The temporary vector is populated with the content
of the vector VG, the contents of the temporary vector are transformed via t1, and the temporary
vector is inserted into the vector hash table to become V1.

In the event that the vector hash table bucket corresponding to the cooked hash value of the
subject vector V1 is not empty, the temporary vector is populated with the characteristics of V1 and
the hash table bucket is searched for the subject vector V1.

static inline unsigned long long hash_th(bits)
unsigned int * bits;

{
int i;
unsigned long long h;
h = 0ULL;
i = n_rttyp_ints - 1;
while (i > 0) {

h += bits[i] * i;
i--;
}

h += bits[0];
return h;

}

Figure 24-7: Top Half Vector Hashing Routine

It should be noted that if V1 is indeed not a member of the vector hash table, its raw hash value
has already been computed and any subsequent transformations of V1 to produce some vector V2
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can be treated in the same manner as described above. To convey an idea of the useful nature of this
technique, there are 12 type vector mutator routines in the Unicon Compiler type inferencer. In all
of these mutators, type vector transformations occur without invoking the top half hashing routine.

An example of how the Unicon Compiler updates the raw hash value of a vector when setting
a bit in a type vector appears in Figure 24-8. The simple arithmetic operations required to perform
this update are the intentional result of choosing a top half hashing routine that maximizes the
performance of incrementality. Thanks to the modulo-based ring semantics of unsigned integer
arithmetic, the previous summation term can be subtracted out and the new term can be added in
correctly even in the presence of integer overflow and underflow.

n = idx ? idx : 1;
vect->raw_hash -= vect->bits[idx] * n;
vect->bits[idx] |= bit_mask;
vect->raw_hash += vect->bits[idx] * n;

Figure 24-8: Updating a Raw Hash Value

The nature of the top half hashing routine is of paramount importance when performing hash
halving. The top half hashing routine must be selected such that it contains logic simple enough
to facilitate the in-place manipulation of the raw hash value of some vector Vn to produce the raw
hash value of vector Vn+1 based upon a vector transformation t applied to vector Vn with no a
priori knowledge of the actual content of vector Vn. An implicit requirement in this pursuit is bi-
directionality of operation: both the setting and clearing of bits in a vector must be computationally
expedient.

The top half vector hashing routine currently used in the Unicon Compiler type inferencer is
depicted in Figure 24-7. In this figure, the value of n_rttyp_ints is computed before the start of type
inferencing and remains constant thereafter. The top half hashing routine depicted in this figure is
extraordinarily simple. This simplicity is of the highest importance because the logic in this routine
is inlined wherever a bit vector is mutated during type inferencing, and is executed hundreds of
millions of times during the course of type inferencing.

The bottom half hashing routine must transform the raw hash value supplied by a top half into
a cooked hash value that contributes to a smooth distribution of vectors over hash table buckets.
The bottom half must also be as fast as possible because it will be invoked hundreds of millions of
times during type inferencing. The bottom half vector hashing routine currently used in the Unicon
Compiler type inferencer is depicted in Figure 24-9. In this figure, the values of hash_shifts,
hash_mask, and hash_upper_shr are computed before the start of type inferencing and remain
constant thereafter. The bottom half hash routine depicted in Figure 24-9 runs in time O(1).
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static inline unsigned int hash_bh(raw)
unsigned long long raw;

{
int i;
unsigned int u;
raw *= 0x20c49ba5e353f7cfULL;
i = hash_shifts;
u = raw & hash_mask;
while (i) {

raw >>= hash_upper_shr;
u ˆ= raw;
i--;
}

return u & hash_mask;
}

Figure 24-9: Bottom Half Vector Hashing Routine

25.6 Metrics

All measurements in this section were taken on a dual-processor, dual-core, 1.8GHz AMD64 ma-
chine with 4GB core running Fedora Core 3 Linux because the sponsor is running Fedora. A
program called cls-gen was used to generate all the programs that are used to measure type in-
ferencing space and time usage in the following metrics. The cls-gen program is a program that
generates programs. This program takes a numeric parameter n and creates files containing n class
declarations and a single main() procedure. The generated main() procedure creates a list that is
populated with a single instance of each of the n classes. The main() procedure then enters a loop
in which all methods contained in each of the n class instances is invoked.

Versions 076 and 0c5 of the Unicon Compiler are compared in the metrics contained in this
section. Version 076 of the Unicon Compiler is the last version that does not use vector hashing.
Version 0c5 of the Unicon Compiler is the first version that uses vector hashing, hash halving, and
vector auras.

25.6.1 Space

The space consumed during type inferencing in versions 076 and 0c5 of the Unicon Compiler are
compared in Figure 24-10 below.
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# types V076 V0c5

416 1.3 MB 26 KB

864 13.1 MB 129 KB

1,676 85 MB 454 KB

3,276 649 MB 1.7 MB

4,876 2.6 GB 3.9 MB

6,476 5.0 GB 6.9 MB

Figure 24-10: Type Inferencing Space Usage
The reader will note that in the type inferencing space comparison, v076 always consumes at

least an order of magnitude more space than v0c5. A program containing 500 run-time types is
considered a fairly small (but not tiny) program in this language.

25.6.2 Time

The time consumed during type inferencing in versions 076 and 0c5 of the Unicon Compiler are
compared below.

# types V076 V0c5

416 .040 .038

864 .588 .549

1,676 6.6 3.6

3,276 101.6 25.4

4,876 524.4 82.8

6,476 1512 198

Figure 24-11: Type Inferencing Times (seconds)

The type inferencing time comparison contained in Figure 24-11 reveals a couple noteworthy
points. Version v0c5 takes about the same time to infer the types in small programs such as that
containing 416 run-time types. This is despite the fact that v076 allocates all type vectors at the
start of type inferencing, whereas v0c5 contains extra logic to pool type vectors and replenish the
pool when it is exhausted. Tailoring of the vector pool allocation algorithm might further improve
the performance reported in v0c5.
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The second point of note regarding Figure 24-11 is that v076 of the Unicon Compiler type infer-
encer consumes more memory than is present in the system when inferring the types in a program
containing 6,476 types. Some of the time represented in the last entry is swapping. Enhancing the
scalability of the type inferencer, and thus avoiding such swapping, was one of the primary moti-
vations for implementing type vector hashing. A comparison of the inferencing times for v076 and
v0c5 on programs containing more types than those depicted in Figure 24-11 would only serve to
illustrate the grisly divergence provoked by swapping as physical memory is exhausted.

25.6.3 Measuring the Techniques

This section examines the contribution that each of the techniques described in this paper makes
to reducing the overall time to infer types in large programs. Three instances of the compiler were
created and labeled A, B, and C. Instance A is a basis point that contains only vector hashing.
Instance B contains vector hashing and hash halving. Instance C contains vector hashing, hash
halving, and vector auras. The time required to perform type inferencing on three programs was
measured in each of these individual instances and appears in Figure 24-12.

# types A B C

3,276 364.6 s 63.7 s 30.3 s

4,876 1847.4 s 287.0 s 107.2 s

6,476 6,319.9 s 800.8 s 246.0 s

Figure 24-12: Type Inferencing Time Per Technique

Each row of Figure 24-12 shows the contribution of the hash halving and vector aura techniques
to the speedup of type inferencing in the Unicon Compiler. This data shows that, when using
a conventional hash table, the dramatic savings in space is achieved at an unacceptable cost in
time, compared with the brute force, non-hashing, highly redundant implementation in v076. The
reader will note that, when comparing the A column in Figure 24-12 with the v076 column in
Figure 24-11, the A instance of the Unicon Compiler takes a factor of 3 or more time to perform
type inferencing than the v076 version of the Unicon Compiler in the programs indicated in these
figures. Type vector hashing using conventional techniques is clearly insufficient in terms of time.

The data in Figure 24-12 indicate that hash halving (B) contributes admirably to type inferenc-
ing speedups in the Unicon Compiler. The smallest speedup gained by adding hash halving to the
Unicon Compiler type inferencer in this set of measurements is roughly 82%. Eliminating type
vector redundancy by hashing type vectors provides a significant space improvement, but the hash
halving technique makes type vector hashing practical in terms of time.
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The vector aura technique (C) in these measurements provides at least a 60% reduction in type
inferencing time. Vector auras are checksums stored in hash table entries to avoid comparing long
data values in the event of collisions; we have experimented with several kinds of auras. If the hash
function is good the hash number itself makes a good aura. Especially fast hash functions may
benefit from different auras.

25.6.4 Collision Rates

In this section we examine the expected rate of collisions in the vector hash table contained in the
Unicon Compiler type inferencer. The expected value rate of hashing collisions is shown for the
Unicon Compiler v0c5, the version that employs vector hashing, hash halving, and vector auras.

# types M N collision rate

416 512 255 0.003922

864 1024 507 0.001972

1,676 2048 1,152 0.000868

3,276 8192 4,377 0.000228

4,876 16384 6,527 0.000153

6,476 16384 8,677 0.000115

Figure 24-13: Vector Hash Table Collisions

In Figure 24-13 the rate of collisions within the vector hash table is shown for each of the
programs depicted in section 24.6. As mentioned previously, the number of buckets in the vector
hash table (M) is calculated before the start of type inferencing based upon information gleaned
from the input program. The number of vectors contained within the hash table is represented by
N. Type vectors are never removed from the vector hash table once they are added, so N in Figure
24-13 represents the number of type vectors in the hash table at the termination of type inferencing.

Figure 24-13 indicates that the expected rate of collisions in the type vector hash table decreases
as the number of types in an input program increases. Rows 5 and 6 of this figure are particularly
interesting in that the number of buckets in the vector hash table remains the same for each of the
programs, but the collision expectation rate decreases as the number of the vectors present in the
hash table increases. One hypothesis for this behavior is that the type vectors contained within the
hash table for the program run in row 6 are less sparse. The bottom half hash routine in the Unicon
Compiler type inferencer (see Figure 24-9) employs xor as its primary operator, and this form of
perturbation tends to favor vectors that are more densely populated with bits that are set.
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Measurements of the expected rate of collisions when using the “full” hashing routine appear-
ing in Figure 24-6 were also taken. The collision rate produced by this routine is statistically
insignificant from the expected value of collisions appearing in Figure 24-13.

To illustrate the scalability of the Unicon Compiler type inferencer, the time and space con-
sumed by the Unicon Compiler v0c5 while inferring the types in a very large program containing
9,676 run-time types was measured, and the time and space consumed by gcc when compiling the
C code generated by the Unicon Compiler for this same program was measured. The Unicon Com-
piler v0c5 consumed 1GB of memory to infer the types in this program. At the apex of its memory
consumption, gcc used roughly 4GB. The Unicon Compiler consumed 13.9 minutes to infer the
types in the program, and gcc consumed roughly 23.1 minutes to compile the resulting C code (not
including as or ld.) In large programs, type inferencing no longer dominates total compile time.
Prior to the start of this work, the Unicon Compiler v076 attempted to allocate 24GB of core at the
start of type inferencing when presented with this same program. On the test machine, this results
in a kernel panic before completing a single iteration of type inferencing.

25.7 Conclusions

The hashing of type vectors in the Unicon Compiler type inferencer has proven to be an effective
technique for decreasing the space required to infer types used in all programs. We have shown
in this paper that vector hashing results in space savings of multiple orders of magnitude when
inferring the types in large input programs. Given the urgent need for vector hashing, the hash
halving technique provides a significant speedup of the type inferencer by eliminating the need to
traverse a type vector in order to compute its hash value. This speedup is particularly evident when
type vectors are very wide. The speedup realized by providing the aura of a type vector to act as
a filtering mechanism when searching a hash table bucket for a given vector is also meaningful,
given that implementing type vector auras is straightforward.

Although we are pleased with the space savings described in this paper, global type inferencing
remains a space challenge. One recent real-world example required 600,000 unique type vectors
in the hash table. With each vector on the order of 1600 bytes, type inferencing alone still requires
˜1GB for this program; larger examples exist. This motivates further reductions in type inferencing
space requirements.

Despite substantial time improvements, we remain dissatisfied with the time required to infer
the types in programs containing thousands of run-time types. We have broadened the domain of
applications for which the Unicon Compiler is a viable tool, but further time-directed research is
necessary. Additional type inferencing speedups may be obtainable by devising better hash halves,
thereby improving the distribution of type vectors over hash table buckets, but other approaches are
also needed. A trie (with edges based on type vector manipulations) superimposed on the vector
hash table might reduce bit manipulation and hash function calls enough to overcome its additional
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costs in terms of space and code complexity.
Experiments were conducted using sparse vectors to represent type vectors in very early space-

directed experiments in the Unicon Compiler. The 67% space savings produced by sparse vector
representation is largely subsumed by the greater space savings and space-complexity improvement
provided by vector hashing. However, the techniques are not mutually exclusive and it may be
possible to couple a sufficiently clever sparse representation of type vectors with the copy-on-
write, reference-based semantics of type vector hashing (and hash halving) to further reduce the
space and time consumed during type inferencing in the Unicon Compiler.

The techniques described in this section were devised by exploiting strengths and attacking
weaknesses specific to the Unicon Compiler type inferencer. However, these techniques can be
applied to other domains where large data is derived incrementally and must be hashed.



384



Chapter 26

Optimizing Code Generated by Iconc

Author: Anthony Jones
Since Ken Walker produced iconc, several optimizations have been implemented with the goal

of improving execution time of the generated executable. The goals of these optimizations are to
make the intermediate code as small as possible and to speed up the resulting executable. First a
brief summary of the internal representation of the C code is provided. This is necessary because
most of these optimizations rely heavily on analyzing the internal C code. Following this, the
individual optimizations are discussed in detail.

There are different levels at which compiler optimizations may be performed. One level of
optimization deals with the front end and intermediate code generation. Some examples of these
optimizations include common subexpression elimination, copy propagation, dead-code elimina-
tion, constant folding, loop unrolling, and strength reduction. Another level of optimization is
machine specific, including efficient register assignments, use of platform-specific instructions that
offer greater performance, or doing peephole transformations [ASU86]. The optimizations imple-
mented thusfar for the Icon compiler are not platform-specific because iconc translates Icon code
into C code which then calls the native C compiler to finish the job.

26.1 Areas Where Iconc Can Be Improved

Iconc’s compiled code is often many times faster than VM-interpreted code, but is far from opti-
mal. The next few sections describe components of the existing compiler that were optimized by
Anthony Jones and are now part of the Unicon language distribution.

An examination of Icon’s generated intermediate C code suggested many areas of improvement.
Some of the optimizations possible were eliminating redundant system calls, replacing Icon literals
with C literals, and eliminating unnecessary logic in variable initialization blocks.

385



386

26.1.1 Redundant Function Calls

A macro named Poll() is called every so often to handle certain system operations such as processing
window system events. The iconc compiler initially did a naive job of placing these function calls
in the generated code. Often there were two calls to Poll() one right after the other or only a simple
assignment between two calls. The objective of this optimization is to remove the redundancy and
let a reasonable number of calls remain.

26.1.2 Constant Propagation

Simple literals appearing in source programs are assigned into the local variable descriptor table
within a procedure. This descriptor table is an array of complicated structures and pointers that
incurs many memory references simply for a constant. It is doubtful that most C compilers would
recognize these values as constants and propagate them accordingly. The objective is to remove as-
signments of constants into the descriptor table and replace references to those descriptor locations
with constant values.

26.1.3 Variable Initialization

At the beginning of every intermediate procedure there are several loops that initialize local vari-
ables and parameters. Sometimes these loops initialize only one or two variables. In certain sit-
uations the loop will not be executed at all, but the code for the loop is still generated, requiring
a comparison when the program executes. The object of this part is to simplify the initialization
loops and to remove loops that have no effect.

26.2 Enabling Optimizations

All the changes made to the Icon compiler in order to implement these optimizations were done
with C compiler directives so that each optimization can be turned on or off during compilation.

All directives are included in src/c/define.h. The symbols OptimizePoll, OptimizeLit, and Opti-
mizeLoop turn on redundant Poll() removal, literal propagation, and loop optimizations respectively.

An additional symbol, LoopThreshold has a default value of 7. This constant, used in the
loop unrolling optimizations, is a limit on the number of entries that may be unrolled in variable
initialization loops.

26.3 Intermediate Code Representation

This section briefly describes how the intermediate C code is represented and generated internally
by the Icon compiler. The majority of the functions that generate this internal representation and
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print it to a file are contained in the following compiler source files: ccode.c, codegen.c, and
inline.c.

26.3.1 How Code is Generated

Once the source code is parsed and evaluated, the intermediate C code needs to be generated and
output to a file for compilation by the native C compiler. First the compiler builds a syntax tree
plus symbol tables and other necessary structures. Then, the header file is created. This includes
standard definitions necessary for all Icon programs and structures and variables specific to the
program being compiled. Next, the proccode function is called for each function in the tree. This
outputs the function definition and variable in initialization code, and then steps through the syntax
tree and creates C code to represent the body of the function. After all the code for the body of the
current procedure is generated internally, the code is then written to the file.

The internal C code is represented through a C structure called struct code which is shown
below.

struct code {
int cd_id;
struct code *next;
struct code *prev;
union cd_fld fld[1];

};

The cd_id field is an identifier signaling what type of code is held in this structure. This field
may be set to one of the following enumerated values. Each value corresponds to a type of code
that can be written to the intermediate C code. The table in Figure 25-1 contains the enumerated
name along with its integer value and a short description.

Code Type Value Description

C_Null 0 No code in this struct

C_CallSig 1 Call a signal (function)

C_RetSig 2 Return a signal
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Code Type Value Description

C_NamedVar 3 Reference a variable

C_Goto 4 Goto statement

C_Label 5 Label statement

C_Lit 6 Literal value

C_Resume 7 Resume signal

C_Continue 8 Continue signal

C_FallThru 9 Fall through signal

C_PFail 10 Procedure failure

C_PRet 11 Procedure return

C_PSusp 12 Procedure suspend

C_Break 13 Break out of signal handling switch

C_LBrack 14 Start of a new C block

C_RBrack 15 End of a C block

C_Create 16 Call create() for a create expression

C_If 17 If statement

C_SrcLoc 18 Source file name

C_CdAry 19 Array of code pieces

Figure 25-1: Code Types
The fld field is important and is directly linked to what type of code the struct code is defined

as. For example, if a struct code is defined as C_If then fld[0] is a pointer to another struct code
that corresponds to the if portion of the statement, and fld[1] is another pointer to a struct code
representing the then portion of the statement. In fact there are two macros for extracting each
pointer. These macros plus macros for all the other code types are found in the ccode.h header file.
However, there is one special case that requires some explanation. If the cd_id is C_CdAry then the
fld element is an unspecified length of cd_fld unions. In this case all even indices into the array are
tags describing the contents of the following array element. There is a special marker, A_End, that
signifies the end of the array.

Figure 25-2 shows these field identifiers along with their corresponding fields for an assignment
statement.
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Figure 25-2: Fields and Their Values in an Assignment

It is important to note that only when the cd_id is C_CdAry will the field identifiers be present.
Figure 25-3 gives the possible values for these tags.

Element Type Value Description

A_Str 0 Pointer to a string

A_ValLoc 1 Pointer to a struct val_loc

A_Intgr 2 Integer value

A_ProcCont 3 Procedure continuation

A_SBuf 4 String buffer

A_CBuf 5 Cset buffer

A_Ary 6 Pointer to a subarray of struct code structures



390

Element Type Value Description

A_End 7 Marker for end of array

Figure 25-3: Element Types
For the most part the C_CdAry is used for miscellaneous code that is not covered by the other

19 code types. Most simple assignments fall into this category. The last two elements of a struct
code, next and prev, are links to the next and previous struct code structures in the chain.

26.4 Redundant Function Calls

An example of this type of optimization are several function calls needed to handle certain run-
time system activities in Icon that are included in the generated C code. For example, throughout
the code Icon places a call to the macro Poll() which checks for pending events such as window
redraws. In some cases there is a call to Poll() followed by an assignment and another call to Poll()
which is far too frequent. The placement of these calls can be analyzed to determine when they are
necessary.

The solution to this problem entails analyzing where the calls to Poll() were being placed. The
Poll() macro is inserted into the generated code by the function setloc which is located in the file
ccode.c of the compiler source. The old method for determining when to insert a call to this
function is somewhat confusing. Also setloc does more than insert these function calls so there
was no change in the way it determined when to put a call in. Instead, a call to analyze_poll
is made that determines if it is safe to remove the previous occurrence of the Poll function. To
accomplish this, a global variable is kept, called lastpoll, which is a pointer of type struct code, and
it is always assigned to the location of the last Poll function. Of course, initially lastpoll is NULL.
The global variable is declared in ccode.c. The prototypes for the two new functions are as follows:

int analyze_poll(void)

This function analyzes the code between the last occurrence of the Poll() macro and the
current position. If there are no function calls (C_CallSig), return signals (C_RetSig), C code
blocks (C_LBrack or C_RBrack), return calls (C_PRet), procedure suspends (C_PSusp), or break
(C_Break), then the previous instance of Poll will be removed; otherwise, it will be left in place.

The reason why the above code types are restricted is because they all involve calling other
functions. If it were known that these functions were short and did not call other functions, then
the call to Poll() could be removed without worry; however, this kind of detailed analysis is not
performed and is inhibited by the fact that some of these functions represented by C_CallSig may
be library functions and these are linked at C compile time.

Also, regardless of whether the previous instance of a call to Poll() is removed the new call to
Poll() is added to the code list and the lastpoll variable is updated.
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novalue remove_poll(void)

This function actually removes the call to Poll() by setting the cd_id field in the struct code
structure to C_Null. It is important to note that the struct code that represents the call to Poll() is
not physically deallocated from the list. Its cd_id field is simply set to C_Null because removing
it introduces side effects which are either errors during C compilation or the misplacement of goto
labels which affects the flow of execution and unpredictable results. This occurs because a struct
code of type C_Goto may reference the removed node.

26.5 Icon Literals and Constant Propagation

Constant progagation was the second most difficult optimization to implement next to the new type
representation because the Icon compiler generates a complex data structure that contains Icon
values, including literals. These Icon literals are assigned into this tended descriptor table even
though these values are constants. There are several reasons to improve the representation of these
constants.

First, by changing these complicated Icon literals to simple C literals, the resulting executable
code will be smaller. Secondly, there is the issue of constant propagation. In many cases, an index
into the descriptor table is passed to a function or assigned to a variable. The question that arises
is whether the C compiler can detect that the descriptor table value being passed is a constant that
can be propagated to all places where the descriptor table is used. For example, the following code
fragment is fairly common:

r_frame.tend.d[4].dword = D_Integer;
r_frame.tend.d[4].vword.integr = 1;
irslt = sub(argp[0].vword.integr, r_frame.tend.d[4].vword.integr);

In this section of code, the structure r_frame.tend.d[4].vword.integr is assigned a value and then
immediately used. This code can be simplified to:

irslt = sub(argp[0].vword.integr, 1);

Note that the assignment of the literal into the descriptor table may no longer be necessary; time
savings on this initialization may be as great as the savings for the simplified reference.

26.5.1 Tended Descriptor Tables

Most functions contain a tended descriptor table. This is an array of descriptor structures which
contain either an integer, pointer to a string, pointer to a block, or a pointer to another descriptor
location. A named variable is assigned a specific index into the descriptor table while temporary
variables are assigned an index, but other temporary variables can be assigned into the same cell
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many times over. Named variables are all those that are explicitly used in the Icon source code
such as loop control variables, and temporary variables are constants values (regardless of type).
For example, in the first Icon code example the value 2.4 is assigned its own location into the
descriptor table. The same thing holds true for the second example. The string "foo" is assigned its
own location. Because both these values are only literals in the Icon code, they are given temporary
locations in the tended desciptor table that may be used over again.

if (x_val = 2.4) then
do_something(x_val)

...

...
if (str_val == "foo") then

do_something(str_val)

For example, if the constant 2.4 is not used after the second code fragment then "foo" may be
assigned into the location previously occupied by 2.4.

26.5.2 Analyzing Literal Assignments

Several new functions were introduced in order to analyze all constants and their use. Inside the
function proccode before the internal C code is written to a file, a call to analyze_literals and
propagate_literals is made which does the propagation. The analyze_literals function builds a table
which contains information such as the scope of a descriptor entry, whether it is safe to propagate
a literal, and the literal value. The table structure is given below.

struct lit_tbl {
int modified;
int index;
int safe;
struct code *initial;
struct code *end;
struct val_loc *vloc;
struct centry *csym;
struct lit_tbl *prev;
struct lit_tbl *next;

};

The field modified is a flag which can be set to one of the enumerated types in Figure 25-4.
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Name Value Description

NO_LIMIT 0 Descriptor never changes

LIMITED 1 Descriptor value does change, propagate any type

LIMITED_TO_INT 2 Descriptor value does change, propagate only if integer

NO_TOUCH 3 Descriptor value should not be propagated

Figure 25-4: Modify Flags
The NO_LIMIT value refers to those descriptor locations that always contain the same constant.

That is, no other value shares the same descriptor location, and it may be propagated freely without
conflicts. The LIMITED value refers to those descriptor locations that are either reused at some
point or are modified is some way. The value LIMITED_TO_INT is similar except that special care
must be taken when propagating this constant. For example, a constant such as a string should not
be propagated everywhere an interger may be propagated.

Lastly, the value NO_TOUCH refers to descriptor locations that should not be propagated. These
descriptor locations often contain loop control variables which are marked as temporary but should
under no circumstances be replaced with their initial values. For example, the first code fragment
shows unoptimized code, and the second fragment is the same code but with constants propagated.
Descriptor location 6 should not be touched because it serves as a loop control variable while the
use of location 7 may be replaced with its constant value 10 even though the same location is
assigned a new value later on after label L9.

r_frame.tend.d[6].dword = D_Integer;
r_frame.tend.d[6].vword.integr = 1;
r_frame.tend.d[7].dword = D_Integer;
r_frame.tend.d[7].vword.integr = 10;

L8:
if (!(r_frame.tend.d[6].vword.integr <=

r_frame.tend.d[7].vword.integr) )
goto L9;
...
++r_frame.tend.d[6].vword.integr;
goto L8;

L9:
r_frame.tend.d[7].dword = D_Integer;
r_frame.tend.d[7].vword.integr = 7;

____________________________________________
r_frame.tend.d[6].dword = D_Integer;
r_frame.tend.d[6].vword.integr = 1;
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L8:
if (!(r_frame.tend.d[6].vword.integr <= 10) )

goto L9;
...
++r_frame.tend.d[6].vword.integr;
goto L8;

L9:
r_frame.tend.d[7].dword = D_Integer;
r_frame.tend.d[7].vword.integr = 7;

The field index is the index into the descriptor table for each constant.
The field safe refers to whether or not it is safe to modify the end field. This field refers to the

point in the intermediate code beyond which it is no longer safe to propagate this value. The end
field is sometimes modified when inserting a new entry into the literal table. This is described in
detail under the tbl_add function presented shortly.

The fields initial and end refer to the scope where it is safe to propagate the current literal
between. If end is NULL then it is safe to propagate to the end of the function.

The fields vloc and csym are pointers to either a struct val_loc or a struct centry which contain
the constant value of the current descriptor. The struct centry member points to the corresponding
location in the global symbol table of constant values maintained by the Icon compiler.

The fields prev and next are necessary to make the table doubly linked.
Also, it should be noted that the number of entries in the literal table is fairly small. During

compilation of Ctree, the largest literal table used contained 15 entries.
The analysis phase consists of stepping through the struct code chain for each function looking

for each instance of a literal. Figure 25-5 shows how a literal is contained within a struct code
structure. At this point, a new entry into the literal table is created that keeps track of where in the
code the literal is assigned into the descriptor table and a pointer to the struct centry structure where
the literal value is kept. This phase also attempts to find the point at which descriptor entries are
assigned new values. Thus a scope is defined which the constant may only be propagated between.
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Figure 25-5: Literal

Once the analysis is complete and the literal table is built then the function propagate_literals
is called which goes through each entry in the literal table and examines the code beginning at
the initial field until the struct code referenced by the end field is encountered. If a struct code is
found that references the descriptor containing the current literal then that reference is replaced by
the literal itself. Figure 25-2 showed a fragment of code for generating an assignment, and Figure
25-6 shows the same fragment with the second descriptor replaced with its literal (assuming that
descriptor location 8 was previously initialized to 27). It is important to note that only the struct
val_loc on the right side of the equal sign will be replaced by its literal.
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Figure 25-6: After Assignment

26.5.3 New Functions

The following functions were created to support the constant propagation optimization. All these
functions are placed in the compiler source file ccode.c. Each function used in the constant propa-
gation is prototyped and described below.

struct lit_tbl *alc_tbl(void)
This function allocates a struct lit_tbl entry that contains information about a literal and its usage.

It first checks a global pointer called free_lit_tbl to see if there are any free table structures that may
be reused. If there are no free structures in this list then a new structure is allocated. Lastly, the
fields are initialized to predefined values.

novalue free_tbl(void)
This function frees the memory used for the current table by attaching the current table to the

list of free table structures (free_lit_tbl).
novalue tbl_add(struct lit_tbl *add)
This function adds a new struct lit_tbl structure into the current table. The insertion is to the end

of the table plus it checks for the previous use of the descriptor location used in the element being
added. For the previous use of the same element, that location’s end pointer is set to the initial
pointer of the element being added. In essence, this defines a scope for each descriptor location.
Once end is set for the first time, it should not be changed later.
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int substr(const char *str, const char *sub)

This function is used to scan strings for logical operators (==, !=, >=, <=, etc). If the string
represented by sub is found in str then TRUE is returned. It is necessary to identify these operators
so a string is not propagated as an operand to one of these operators which is not valid C syntax.

int instr(const char *str, int chr)

This function is used to determine if a string contains an assignment operator. This function
will return TRUE if the string str contains any type of assignment (=, +=, -=, *=, /=, or %=).

novalue invalidate(struct val_loc *v, struct code *end, int code)

This function sets values for an element in the literal table. For all literal table entries that point
to the struct val_loc represented by v the end field is set to end with the modified field set to code.
code can be one of the following enumerated values: NO_LIMIT, LIMITED, LIMITED_TO_INT, or
NO_TOUCH.

novalue analyze_literals(struct code *start, struct code *top, int lvl)

This function steps through the struct code list for each function, building up a literal table, and
analyzing the scope between which each literal can be safely propagated. It checks for loop control
variables, when and if the value of a constant descriptor location changes, and checks to see if a
descriptor location is passed by reference to any functions.

novalue propagate_literals(void)

This function steps through each entry in the literal table and begins to replace occurences of
the descriptor location with the literal between the struct code structures from the initial field to the
end field. The function eval_code is called to do the actual propagation.

int eval_code(struct code *cd, struct lit_tbl *cur)

This function first checks to see if the descriptor index of the code currently being examined
matches that of the current literal table entry. If the current descriptor is accessed as an integer or
a string then the descriptor is replaced with the literal value. Also, the modified is checked to see
if there are any restrictions on replacement. The table in Figure 25-7 lists the restrictions for each
possible value of modified.

Name Replacement Restrictions

NO_LIMIT Always replace
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Name Replacement Restrictions

LIMITED Always replace within initial and end

LIMITED_TO_INT Only replace if used as int, also limited by scope

NO_TOUCH Never replace

Figure 25-7: Replacement Policy
The actual replacement of a descriptor reference to a literal is accomplished by setting the

current index into the fld array to the A_Str type and allocating a string where the literal is copied
into. Figure 25-2 and Figure 25-6 illustrate an occurrence of this.

26.6 Variable Initialization

Another issue is the initialization of the descriptor tables in each C function that is generated by the
Icon compiler. Many of the generated functions contain a loop that initializes all the entries of the
local descriptor table to the null descriptor. This is rather cumbersome and generates a great deal
of overhead.

26.6.1 Eliminating Dead Code

The first optimization to the variable initialization was to eliminate “dead” code, which is code that
is never executed. In some cases the loops that initialize the descriptor tables resembled this:

for (i = 0; i < 0; ++i)
r_frame.tend.d[i] = nulldesc;

This code is generated for Icon library functions in the function outerfnc located in codegen.c.
There is a separate function that outputs similar code for user written functions which does check
to see if the loop will ever execute. Both functions contain a variable ntend which hold the number
of descriptor entries. A simple check for equality with zero was added.

26.6.2 Loop Unrolling

Every user function initializes all tended descriptor entries to the value of the null descriptor
nulldesc at the beginning of the function. It is a simple one-line for loop similar to the follow-
ing code fragment.
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for (i = 0; i < 3; ++i)
r_frame.tend.d[i] = nulldesc;

Also, upon examining the C code generated from several programs, the number of descriptor
entries per procedure rarely exceeds ten. Because this is a relatively small number, these loops can
be unrolled into a series of assignments, and the loop may be removed. The following code is the
above loop unrolled.

r_frame.tend.d[0] = nulldesc;
r_frame.tend.d[1] = nulldesc;
r_frame.tend.d[2] = nulldesc;

While this will increase the size of the generated code, the loop overhead is eliminated. There
is a limit placed on the number of loop iterations that will be unrolled which is defined in define.h.
Currently, this value, LoopThreshold, is set to 6. Because this number and the number of descriptor
table entries is small, the number of unrolled elements is reasonable, and the code size is not greatly
affected.

The code that unrolls these loops is in the function outerfnc in the file codegen.c. Because this
change is only several lines, the code that implements loop unrolling is included below.

#ifdef OptimizeLoop
if (ntend > 0) /* Check for dead code */

for (i=0; i < ntend ;i++)
fprintf(codefile,

" r_frame.tend.d[%d] = nulldesc; \n",i);
#else

fprintf(codefile, "for (i=0; i < %d ;i++) \n", ntend);
fprintf(codefile, " f_frame.tend.d[i] = nulldesc;\n;");

#endif

26.7 Results

Several tests were run to determine whether the code generation optimizations were effective.
These optimizations were performed in hopes of improving the execution speed of the compiled
program, reducing the size of the intermediate code and the resulting executable, and the compila-
tion time.
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Overall, the optimizations improved the execution speed by a modest amount. The improve-
ment is roughly between 6-8.25%. While this is not a great as was hoped, it still is an improvement.
The code size of both the intermediate code and the generated executable are suprisingly smaller.
The loop unrolling seemed to be offset by the constant progagation which eliminated unnecessary
assigments and references. The size of the executables were reduced by approximately 4-8% for
large programs, but there was no change in executable size for small programs (20 lines). The size
of the generated C file was consistently around 3% smaller than before the optimizations. Also, on
average around half of all calls to Poll() were removed, and in one case, two thirds were eliminated.

The rest of this section presents detailed information on the results of the optimizations for
removing redundant function calls, unrolling loops, removing dead code, and propagating literals.
Details of the results of the code generation optimizations are presented in the areas of execution
speed, code size, and compilation time. These tests were run on several programs. The first pro-
gram, Beards, generates production grammars, non-terminals, terminals, and epsilon sets from an
input grammar. The second program, Yhcheng, is a line editor similar to ed which also has revision
control capabilities. For the code size and compilation time tests, two other programs, Ctree and
Sphere, were used for tests. Beards, Yhcheng, and Ctree are all large programs while Sphere is in-
cluded because it is a very small program (less than 25 lines). All timings performed used the Unix
or Linux time utility. Also note that these timings were performed with all optimizations turned on
including the type representation optimization.

26.7.1 Execution Speed

Each program was run 10 times with sample input and averages were computed. Figure 25-8
summarizes the execution times for Beards and Yhcheng.

Program Version User System Elapsed

Optimized 0.5 0.12 00:01.17

Beards Unoptimized 0.52 0.13 00:01.27

Improvement 4.97% 9.09% 8.25%

Optimized 0.59 1.11 00:01.99

Yhcheng Unoptimized 0.62 1.27 00:02.14
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Program Version User System Elapsed

Improvement 4.21% 12.91% 6.79%

Figure 25-8: Execution Times

26.7.2 Code Size

Tests were run on the same two programs to determine if there was an improvement in either the
intermediate code size or the size of the resulting executable. Figure 25-9 displays the code sizes
for Beards, Yhcheng, Ctree, and Sphere. The first three programs are large (500-1800 lines) while
Sphere is small (20 lines).

Program Version C File H File Executable

Optimized 246159 12967 204800

Beards Unoptimized 252041 12967 212992

Improvement 2.33% 0.00% 3.85%

Optimized 554014 46168 294912

Yhcheng Unoptimized 568118 46168 319488

Improvement 2.48% 0.00% 7.70%

Optimized 290536 61545 225280

Ctree Unoptimized 298813 61545 237568

Improvement 2.77% 0.00% 5.17%

Optimized 82289 49755 159744

Sphere Unoptimized 84972 49755 159744

Improvement 3.16% 0.00% 0.00%

Figure 25-9: Code Sizes
Much of the reduction in code size can be attributed to the removal of redundant calls to Poll,

and it is this reduction that offsets the loop unrolling. Improvements on Beards, Yhcheng, and
Sphere show that almost one half of all calls to Poll were eliminated; however, Ctree shows almost
a two thirds reduction. Figure 25-10 shows the number of calls to Poll for each program before and
after the optimization.
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Test Program No. Before No. After

Beards 810 481

Yhcheng 2144 1135

Ctree 745 293

Sphere 40 22

Figure 25-10: Number of Redundant Functions Removed
Compilation Time
Lastly, the compilation times for the sample programs are given. Each program was compiled

five times with the results averaged. Again, results for the Beards, Yhcheng, Ctree, and Sphere are
in Figure 25-11.

Program Version User System Elapsed

Optimized 43.57 1.77 00:47.40

Beards Unoptimized 60.93 1.65 01:02.93

Improvement 28.49% -7.27% 24.68%

Optimized 116.97 2.76 02:04.14

Yhcheng Unoptimized 163.37 2.86 02:49.71

Improvement 28.40% 3.50% 26.85%

Optimized 65.26 2.54 01:13.44

Ctree Unoptimized 92.25 2.88 01:47.44

Improvement 29.26% 11.81% 31.65%

Optimized 11.98 1.83 00:16.36

Sphere Unoptimized 13.62 2.22 00:18.85

Improvement 12.04% 17.57% 13.21%

Figure 25-11: Compile Times

26.7.3 Analysis of Intermediate Code Optimizations

The gains in execution speed and code size were modest but not startling. For the most part,
improvement was less than 10%. However, the results for compilation time are more promising.
The speedup was between 24% and 31% for large programs, which is between a 15 and 45 second
improvement.
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The eliminated functions calls most likely have a negligible effect on execution speed but
greatly contributed to the reduction in code size. For example, on a large program like Yhcheng
which contained more than 18,600 lines of C code, approximately 450 redundant calls were re-
moved. It was not expected that eliminating ``dead’’ initialization loop would have much effect
on execution speed. Constant propagation and loop unrolling probably accounted for the improved
execution times. However, more of an improvement was expected from the constant propagation
optimization. Two possible explanations could be that the native C compiler is able to reduce the
complex structure lookup to its literal value or that the compiler has so much other baggage slow-
ing down execution that the constant propagation improvement was not enough to make a great
difference. The second explanation seems more likely.

The size of the intermediate code and executable code were also modestly improved. The
elimination of redundant function calls offset the addition of code due to loop unrolling. Also,
eliminating unnecessary initializations for literals that were propagated contributed to the smaller
code sizes. It is important to note that as it is, the compiler generates an enormous amount of code
for procedure continuations and suspensions so that 25-30% of the intermediate code are these
functions and the rest is user code.

Lastly, the speed of compilation was a pleasant surprise; however, I do believe that this improve-
ment is due to the type inferencing optimization because the current optimizations being discussed
only add extra logic to improve the generated code. Another significant factor is that less memory
is being used by the type inferencing system, which therefore causes less access to virtual memory.
I should note that all the tests were run with that optimization on, and the improvement to type
inferencing simplifies the type system in many ways. To determine if a specific bit is set, the old
system had to create a mask and find the appropriate index into a long bit vector. The new system
requires a single comparison in the case of the five builtin types.

26.8 Conclusion and Future Optimizations

All of the optimizations discussed in this chapter have been implemented. Some of the optimiza-
tions performed extremely well while others did not have much effect. The type representation
change provided a substantial improvement on the memory usage required by the type inferencing
system. As was stated early, the compiler still uses too much memory to be of much use to the
average Icon programmer but is much better suited to offering the added speedup of compiled code
when occasionally necessary.

The intermediate code optimizations were really just the tip of the iceberg of all the possible im-
provements to this area. The removal of redundant calls to system calls was a small improvement.
Literal propagation was probably the most significant improvement along with loop unrolling. Fur-
ther optimizations in this area are likely to yield the best improvements to performance.

After studying the generated code, several other optimizations were identified that may offer
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additional improvements to both the speed of execution and the size of the intermediate and exe-
cutable code. The next few paragraphs describe additional optimizations and are organized in the
order of the easiest to hardest to implement.

1. For the unrolled descriptor initializations change the indexing array to pointer arithmetic
which is faster. For example the following code fragment is modified as follows:

r_frame.tend.d[0] = nulldesc;
r_frame.tend.d[1] = nulldesc;
r_frame.tend.d[2] = nulldesc;

register dptr p;
p = r_frame.tend.d;
(p++)->dword = nulldesc;
(p++)->dword = nulldesc;

1. Analyze the logic of loops and also unroll smaller ones. For example, the following loop
appears at the beginning of most functions.

for (i = 0; i < r_nargs ; ++i)
deref(&r_args[i], &r_frame.tend.d[i + 0]);

for(i = r_nargs; i < 2 ; ++i)
r_frame.tend.d[i + 0] = nulldesc;

In this case r_nargs cannot be greater than two because it was earlier declared to have only two
entries. It would be necessary to guarantee that r_nargs can never be more than two, but if it is
certain that there are exactly two elements then we can write the initialization loop as follows:
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if(r_nargs > 0) {
deref(&r_args[0], &r_frame.tend.d[0]);
if (r_nargs > 1)

deref(&r_args[1], &r_frame.tend.d[1]);
else

tend.d[1].dword = D_Null;
}

else
tend.d[0].dword = D_Null;

This optimization could lead to a gain in execution speed. For example, if the unrolling is
performed on descriptors with array sizes of one or two, approximately 40% of these loops would
be unrolled.

1. An easy and obvious solution would be to simplify expressions like i + 0 which commonly
occur. This will not improve execution time because the C compiler will catch this, but by
removing it before writing the statement to the intermediate file, the compile time of the C
compiler will be improved.

2. Another easy optimization would be to shorten variable names. This causes a penalty by
having to write long names such as r_frame.tend.d to file and then having the C compiler
read it back in. This could be changed to r_f.t.d. While this makes the intermediate C code
hard to read, the intermediate code is not meant to be inspected by the user and will result in
faster compilations.

3. For the initialization loops present in all functions, remove the initialization of the loop con-
trol variable when unnecessary. Consider the following loop:

for (i = 0; i < r_nargs ; ++i)
deref(&r_args[i], &r_frame.tend.d[i + 0]);

for(i = r_nargs; i < 2 ; ++i)
r_frame.tend.d[i + 0] = nulldesc;

The variable i in the second loop does not need to be initialized since it is already at the value
that it is supposed to be for the second loop. The next fragment of code illustrates this change.



406

for (i = 0; i < r_nargs ; ++i)
deref(&r_args[i], &r_frame.tend.d[i + 0]);

for( ; i < 2 ; ++i)
r_frame.tend.d[i + 0] = nulldesc;

While this change is very easy, it is questionable whether this will provide noticeable improve-
ment in execution except in large programs where these loops are very common.

1. Assignments of the r_frame.tend.d structures may be simplified. Consider the following
assignment:

r_frame.tend.d[2] /* i */.vword.integr =
r_frame.tend.d[4].vword.integr;

r_frame.tend.d[2] /* i */.dword = D_Integer;

This could be changed into a single assignment as follows:

r_frame.tend.d[2] = r_frame.tend.d[4];

This optimization would require more work than the previously described ones. Each struct
val_loc structure would have to be examined, including the context in which it is used in order to
catch assignments such as this; however, these assignments are very common and could lead to
substantial gains in execution speed.

1. Similarly, perform the same simplified descriptor assignment on global descriptor locations.
A method needs to be created for changing global assignments such as:

globals[63] /* rnode */.dword = D_Integer;
globals[63] /* rnode */.vword.integr = 1;

into

globals[63] /* rnode */ = onedesc;

where onedesc is a single descriptor that already contains the values of the dword and vword being
assigned. This could be performed by creating several constant decriptors for the common values
such as 0 or 1. Like the previous optimization, this change will offer a smaller improvement to
execution speed because global descriptor assignments occur much less frequently.
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1. When a variable is dereferenced, it is often the case that the variable location is passed in
for both parameters to the deref function. For example, in the following code example,
r_frame.tend.d[7] is the variable being derefenced and the location where the dereferenced
value is to be placed. This can be simplified by creating another version of deref, perhaps
named deref1, that takes a single argument, dereferences it, and places the dereferenced value
into the parameter location.

deref(&r_frame.tend.d[7], &r_frame.tend.d[7]);

1. Another issue is redundant constant initializations. Consider the following code:

r_frame.tend.d[8].dword = D_Integer;
r_frame.tend.d[8].vword.integr = 1;
if (!(argp[1] /* level */.vword.integr== 1) )

goto L19 /* bound */;
r_frame.tend.d[8].dword = D_Integer;
r_frame.tend.d[8].vword.integr = 1;

The descriptor location 8 is assigned the value of 1 and then a conditional statement is per-
formed which is followed by a possible goto. If the jump does not occur then the same descriptor
location is assigned the same value over again. Clearly the second assignment is wasteful and needs
to be eliminated. This would require fairly aggressive analysis of the intermediate code in order
to catch these code sequences, but does offer the benefits of increased execution speed and smaller
code size.

A more difficult optimization that offers a substantial reduction in the size of the interme-
diate and executable code deals with the initialization functions that set up frames. In the
case of Ctree, over 30% of the generated C code consists of these functions. For example, in
Ctree there are two functions named P06i_set_value_Vtext and P03n_unset_Vbool_coupler which
are identical except for their frame structures, similarly defined as PF06i_set_value_Vtext and
PF03n_unset_Vbool_coupler; however, these structures are identical. A possible solution would
be to write out one copy of each unique frame structure along with its corresponding function that
would initialize that frame. In addition to the reduction of code size this would result in faster com-
pilations and faster loading of the resulting executable. This last optimizations is the most difficult
and would require extensive changes; however, this optimization offers the best improvements in
code size, execution time, and compile time.



408



Chapter 27

Future Work on the Compiler

27.1 Summary of Part II

The underlying ideas used in type inferencing, liveness analysis, and temporary variable allocation
were explored using prototype systems before work was started on the compiler described in this
part of the compendium. The fundamental reasons for creating the compiler were to prove that
these ideas could be incorporated into a complete and practical compiler for Icon, to explore opti-
mizations that are possible using the information from type inferencing, and to determine how well
those optimizations perform. The goal of proving the usefulness of ideas continues a long tradition
in the Icon language project and in the SNOBOL language project before it.

The prototype type inferencing system demonstrates that a naive implementation uses too much
memory; implementation techniques were developed for the compiler to greatly reduce this mem-
ory usage. As the design and implementation of the compiler progressed, other problems presented
themselves, both large and small, and solutions were developed to solve them. These problems
include how to elegantly produce code either with or without type checking, how to generate good
code for simple assignments (a very important kind of expression in most Icon programs), how to
generate code that uses the continuation-passing techniques chosen for the compilation model, and
how to perform peephole optimizations in the presence of success continuations.

This part of the compendium describes the problems addressed by the Icon compiler and why
they are important to the compiler, along with innovative solutions. It presents a complete set
of techniques used to implement the optimizing compiler. Performance measurements demonstrate
the improvements brought about by the various optimizations. They also demonstrate that, for most
programs, compiled code runs much faster than interpreted code. Previous work has shown that
simply eliminating the interpreter loop is not enough to produce large performance improvements
[.tr88-31.]. Therefore, the measurements show that the set of techniques, in addition to being
complete, is also effective.
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27.2 Future Work

The Icon compiler builds upon and adds to a large body of work done previously by the Icon
project. There are many problems and ideas relating to the implementation of Icon that remain to
be explored in the future. Several are presented in earlier chapters. Others are described in the
following list.

• The quality of type inferencing can be improved. For example, if

x ||| y

is successfully executed, both x and y must contain lists. The current version of type infer-
encing in the compiler does not use this information; it updates the store based on result types
and side effects, but not based on the argument types that must exist for successful execu-
tion without run-time error termination. Another improvement is to extend the type system
to include constants and thereby perform constant propagation automatically as part of type
inferencing. The type system can also be extended to distinguish between values created in
allocated storage and those that are constant and do not reside in allocated storage. A de-
scriptor that never contains values from allocated storage does not need to be reachable by
garbage collection.

• In spite of large improvements in the storage requirements of type inferencing over the pro-
totype system, type inferencing still requires large amounts of memory for some programs.
A suggestion by John Kececioglu [.johnk.] is to explore the use of applicative data struc-
tures that share structure with their predecessors. The space required by type inferencing has
largely been solved by Anthony Jones and Mike Wilder. Wilder’s hash tables of copy-on-
write type vectors can be viewed as a realization of Kececioglu’s suggestion.

• Type inferencing provides information about values that do not need run-time type infor-
mation associated with them. In the case of integers and reals, this information along with
information from the data base about run-time operations can be used to perform computa-
tions on pure C values and to demote Icon descriptor variables to simple C integer and double
variables. The current compiler makes little use of these opportunities for optimization. Nu-
merous other optimizations using the information from type inferencing are possible beyond
what is currently being done. One of them is to choose the representation of a data structure
based on how the data structure is used.

• Translating constant expressions involving integer and real values into the corresponding C
expressions would allow the C compiler to perform constant folding on them. For other
Icon types, constant folding must be performed by the Icon compiler. This is particularly
important for csets, but is not presently being done.
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• O’Bagy’s prototype compiler performs two kinds of control flow optimizations. It eliminates
unnecessary bounding and demotes generators that can not be resumed. The code generation
techniques used in this compiler combined with the peephole optimizer automatically elim-
inate unnecessary bounding. The peephole optimizer also automatically demotes generators
that are placed in-line. Enhancements to the peephole optimizer could effect the demotion of
generators that are not placed in-line.

• The compiler uses a simple heuristic to decide when to use the in-line version of an oper-
ation and when to call the function implementing the operation using the standard calling
conventions. More sophisticated heuristics should be explored.

• Temporary variables can retain pointers into allocated storage beyond the time that those
pointers are needed. This reduces the effectiveness of garbage collection. Because garbage
collection does not know which temporary variables are active and which are not, it retains all
values pointed to by temporary variables. This problem can be solved by assigning the null
value to temporary variables that are no longer active. However, this incurs significant over-
head. The trade off between assigning null values and the reduced effectiveness of garbage
collection should be explored.

• The Icon compiler generates C code. If it generated assembly language code, it could make
use of machine registers for state variables, such as the procedure frame pointer, and for
holding intermediate results. This should result in a significant improvement in performance
(at the cost of a less portable compiler and one that must deal with low-level details of code
generation).

• Several of the analyses in the compiler rely on having the entire Icon program available.
Separate compilation is very useful, but raises problems. On possible solution is to change
the analyses to account for incomplete information. They could assume that undeclared vari-
ables can be either local or global and possibly initialized to a built-in function or unknown
procedures, and that calls to unknown operations can fail, or return or suspend any value and
perform any side-effect on any globally accessible variable. This would significantly reduce
the effectiveness of some analyses. Another approach is to do incremental analyses, storing
partial or tentative results in a data base. This is a much harder approach, but can produce
results as good as compiling the program at one time.

• Enhancements to the compiler can be complemented with improvements to the run-time
system. One area that can use further exploration is storage management.
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Part III

The Implementation of Unicon
by Clinton L. Jeffery, Michael D. Wilder, and Jafar Al Gharaibeh
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Chapter 28

The Unicon Translator

Unicon was originally a modest addition to Icon. As much as possible, features are implemented
by extending existing functions with new semantics, and by the addition of new functions and
keywords with no new syntax. Originally, the object-oriented facilities were implemented as a
simple line-oriented preprocessor named Idol. When Idol was merged with the Posix and ODBC
facilities to become Unicon, the Idol preprocessor was substantially modified to a full parser that
generates code by traversing a syntax tree. It is still reasonable to call the Unicon translator a
preprocessor, but it has many of the traits of a compiler.

28.1 Overview

The Unicon translator lives in uni/unicon/. In addition to many Unicon source files, it uses the
external tools iyacc and merr to generate its parser and syntax error message tables, which depend
on files unigram.y and meta.err, respectively. Unicon is written in Unicon, posing a bootstrapping
problem. When building from sources, some of the .icn files can be translated by icont (the Icon
translator, a C program). Those files that require Unicon itself in order to compile are included in
precompiled object format (in .u files) in order to solve the bootstrapping problem.

28.2 Lexical Analysis

Unicon’s lexical analyzer is adapted from a hand-written lex-compatible scanner written by Bob
Alexander and used in the Jcon Java-based implementation of Icon. Some of its design is borrowed
from the original Icon lexical analyzer (which is handwritten C code). It would be interesting to
replace Unicon’s lexical analyzer with a machine generated lexical analyzer to reduce the amount
of compiler source code to maintain. The lexical analyzer consists of a function yylex() located in
unicon/uni/unicon/unilex.icn, about 500 lines of code.
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28.2.1 Lex-compatible API

The global declarations that exist in order to provide a Lex-compatible API include:

$include "ytab_h.icn" # yacc’s token categories
global yytext # lexeme
global yyin # source file we are reading
global yytoken # token (a record)
global yylineno, yycolno, yyfilename # source location

28.2.2 Character Categories

The lexical analyzer uses several csets for different character categories beyond the built-in ones:

global O, D, L, H, R, FS, IS, W, idchars

procedure init_csets()
O := ’01234567’
D := &digits
L := &letters ++ ’_’
H := &digits ++ ’abcdefABCDEF’
R := &digits ++ &letters
FS := ’fFlL’
IS := ’uUlL’
W := ’ \t\v’
idchars := L ++ D

end

28.2.3 The Token Type

The record type storing each token’s information just bundles together the syntactic category (an
integer), lexeme (a string), and location at which the token occurred. This is pretty minimalist.

record token(tok, s, line, column, filename)

28.2.4 Error Handling and Debugging

Several remaining global variables are mainly used for error handling, and for debugging the lexical
analyzer itself.
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28.2.5 Reserved Words

Global reswords() creates and becomes a table holding the Unicon reserved words. For each word,
a pair of integers [tokenflags, category] is kept. The tokenflags indicate whether the token allows
semi-colon insertion if a newline immediately precedes it (Beginner) or comes after it (Ender); see
section 26.2.7 below. Language design note: tables in this language need a literal format.

procedure reswords()
static t
initial {

t := table([Beginner+Ender, IDENT])

t["abstract"] := [0, ABSTRACT]
t["break"] := [Beginner+Ender, BREAK]
t["by"] := [0, BY]
...
t["to"] := [0, TO]
t["until"] := [Beginner, UNTIL]
t["while"] := [Beginner, WHILE]
}

return t
end

28.2.6 Big-inhale Input

A function, yylex_reinit() is called the first time yylex() is called, along with each time the compiler
moves to process a new file named on the command line. Along with initializing the public API
variables, this function reads in the entire file, in a single global string variable, cleverly named
buffer. This allows extremely fast subsequent processing, which does no file I/O for each token,
while avoiding complex buffering sometimes done to reduce file I/O costs in compilers.

This “big-inhale” model did not work well on the 128K PDP-11 UNIX computers Icon’s C
implementation were developed on, but works well in this century. At present, the code assumes
Unicon source files are less than a megabyte – a lazy programmer’s error. Although Unicon pro-
grams are much shorter than C programs, an upper limit of 1MB is bound to be reached someday.

procedure yylex_reinit()
yytext := ""
yylineno := 0
yycolno := 1
lastchar := ""
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if type(yyin) == "file" then
buffer := reads(yyin, 1000000)

else
buffer := yyin

tokflags := 0
end

28.2.7 Semicolon Insertion

Icon and Unicon insert semicolons for the programmer automatically. This is an easy lexical an-
alyzer trick. The lexical analyzer requires one token of lookahead. Between each two tokens, it
asks: was there a newline? If yes, was the token before the newline one that could conceivably be
the end of an expression, and was the token at the start of the new line one that could conceivably
start a new expression? If it would be legal to do so, it saves the new token and returns a semicolon
instead.

This little procedure is entirely hidden from the regular lexical analyzer code by writing that
regular code in a helper function yylex2(), and writing the semicolon insertion logic in a yylex()
function that calls yylex2() when it needs a new token.

Initialization for the yylex() function shows the static variables used to implement the one token
of lookahead. If the global variable buffer doesn’t hold a string anymore, /buffer will succeed and it
must be that we are at end-of-file and should return 0.

procedure yylex()
static saved_tok, saved_yytext
local rv, ender
initial {

if /buffer then
yylex_reinit()
}

if /buffer then {
if \debuglex then

write("yylex() : 0")
return 0
}

If a semicolon was inserted the last time yylex() was called, the saved_tok will be the first token
of the next line; it should be returned.
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if \saved_tok then {
rv := saved_tok
saved_tok := &null
yytext := saved_yytext
yylval := yytoken := token(rv, yytext, yylineno, yycolno, yyfilename)
if \debuglex then

write("yylex() : ",tokenstr(rv), "\t", image(yytext))
return rv
}

Otherwise, we should obtain the next token by calling yylex2(). We have to check for end of
file, remember if the last token could end an expression, call yylex2(), and update buffer to be the
smaller string remaining after the token.

ender := iand(tokflags, Ender)
tokflags := 0
if *buffer=0 then {

buffer := &null
if \debuglex then

write("yylex() : EOFX")
return EOFX
}

buffer ? {
if rv := yylex2() then {

buffer := tab(0)
}

else {
buffer := &null
yytext := ""
if \debuglex then

write("yylex() : EOFX")
return EOFX
}

}

After fetching a new token, we have to decide whether to insert a semicolon or not. This is based
on global variable ender (whether the previous token could end an expression) and global variable
tokflags (which holds both whether the current token could begin an expression, and whether a
newline occurred between the last token and the current token). iand() is a bitwise AND, equivalen
to C language & operator, used to pick bits out of a set of boolean flags encoded as bits within an
integer.
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if ender˜=0 & iand(tokflags, Beginner)˜=0 & iand(tokflags, Newline)˜=0 then {
saved_tok := rv
saved_yytext := yytext
yytext := ";"
rv := SEMICOL
}

Returning a token requires allocation of a token() record instance, which is stored in a global
variable.

yylval := yytoken := token(rv, yytext, yylineno, yycolno, yyfilename)
if \debuglex then

write("yylex() : ", tokenstr(rv), "\t", image(yytext))
return rv

end

28.2.8 The Real Lexical Analyzer Function, yylex2()

This function maintains a table of functions, calling a helper function depending on what the first
character in the token is.

procedure yylex2()
static punc_table
initial {

init_csets()
reswords := reswords()
punc_table := table(uni_error)
punc_table["’"] := do_literal
punc_table["\""] := do_literal
punc_table["!"] := do_bang
punc_table["%"] := do_mod
...
punc_table["$"] := do_dollar
every punc_table[!&digits] := do_digits
every punc_table["_" | !&letters] := do_letters
}

The main lexical analyzer code strips comments and whitespace, and calls the function table for
the first non-whitespace character it finds. Note support for #line directives, and the use of string
scanning.
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yycolno +:= *yytext

repeat {
if pos(0) then fail
if

="#" then {
if ="line " then {

if yylineno := integer(tab(many(&digits))) then {
=" \""
yyfilename := tab(find("\"")|0)

}
}
tab(find("\n") | 0)
next

}
if ="\n" then {

yylineno +:= 1
yycolno := 1
if tokflags < Newline then

tokflags +:= Newline
next

}
if tab(any(’ ’)) then { yycolno +:= 1; next }
if tab(any(’\v\ˆl’)) then { next }
if tab(any(’\t’)) then {

yycolno +:= 1
while (yycolno-1) % 8 ˜= 0 do yycolno +:= 1
next

}

yytext := move(1)
return punc_table[yytext]()

}
end
The functions in the punctuation table select integer codes and match the rest of the lexeme.

do_comma() illustrates an unambiguous token selection, while do_plus() illustrates a more com-
mon case where the "+" character could start any of 5 different tokens depending on the character(s)
that follow it. Tokens starting with "letters" are looked up in a reserved words table, which tells
whether they are special, or just a variable name.
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procedure do_comma()
return COMMA

end

procedure do_plus()
if yytext ||:= =":" then {

if yytext ||:= ="=" then { return AUGPLUS }
return PCOLON

}
if yytext ||:= ="+" then {

if yytext ||:= =":=" then {return AUGUNION}
return UNION

}
tokflags +:= Beginner
return PLUS

end

procedure do_letters()
yytext ||:= tab(many(idchars))
x := reswords[yytext]
tokflags +:= x[1]
return x[2]

end

28.3 The Unicon Parser

Unicon’s parser is written using a YACC grammar; a graduate student (Ray Pereda) modified
Berkeley’s public domain version of YACC (byacc) to generate Unicon code, following in the
footsteps of someone who had earlier modified it to generate Java. The Unicon parser lives in
uni/unicon/unigram.y in the source distribution (22kB, 700 lines, 119 terminals, 71 nonterminals).
Unicon’s YACC grammar was obtained by copying the Icon grammar, and adding Unicon syntax
constructs. Prior to this time the object-oriented dialect of Icon was called Idol and really was a
line-oriented preprocessor instead of a compiler.

The start symbol for the grammar is named program, and the semantic action code fragment
for this nonterminal calls the rest of the compiler (semantic analysis and code generation) directly
on the root of the syntax tree, rather than storing it in a global variable for the main() procedure to
examine.

program : decls EOFX { Progend($1);} ;
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Many context free grammar rules are recursive, with an empty production to terminate the
recursion. The rule for declarations is typical:

decls : { $$ := EmptyNode }
| decls decl {

if yynerrs = 0 then iwrites(&errout,".")
$$ := node("decls", $1, $2)
} ;

The "semantic action" (code fragment) for every production rule builds a syntax tree node and
assigns it to $$ for the nonterminal left-hand side of the rule.

Another common grammar pattern is a production rule that has many different alternatives,
such as the one for individual declarations:

decl : record
| proc
| global
| link
| package
| import
| invocable
| cl
;

For such "unary" productions, child’s syntax tree node suffices for the parent, no new tree node
is needed.

Some nonterminals mostly correspond to a specific sequence of terminals, as is the case for
package references:

packageref : IDENT COLONCOLON IDENT { $$ := node("packageref", $1,$2,$3) }
| COLONCOLON IDENT { $$ := node("packageref", $1,$2) }
;

The lexical analyzer has already constructed a valid "leaf" for each terminal symbol, so if a
production rule has only one terminal symbol in it, for a syntax tree we can simply use the leaf for
that nonterminal (for a parse tree, we would need to allocate an extra unary internal node):

lnkfile : IDENT ;
| STRINGLIT ;

The expressions (which comprise about half of the grammar) use a separate nonterminal for
each level of precedence intead of YACC’s declarations for handling precedence (%left, %right,
etc). The Icon and Unicon grammars approach 20 levels of nonterminals. A typical rule looks like:

expr6 : expr7 ;
| expr6 PLUS expr7 { $$ := node("Bplus", $1,$2,$3);} ;
| expr6 DIFF expr7 { $$ := node("Bdiff", $1,$2,$3);} ;
| expr6 UNION expr7 { $$ := node("Bunion", $1,$2,$3);} ;
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| expr6 MINUS expr7 { $$ := node("Bminus", $1,$2,$3);} ;
The "B" stands for "binary", to distinguish these operators from their unary brethren. The 20

levels of nonterminals approach is inherited from Icon and probably makes the parser larger than it
has to be, but taking these nonterminals out doesn’t seem to help much.

28.3.1 Syntax Error Handling

Icon employed a relatively clever approach to doing syntax error messages with YACC — the
parse state at the time of error is enough to do fairly good diagnoses. But, every time the grammar
changed, the parse state numbers could change wildly. For Unicon I developed the Merr tool,
which associates parse error example fragments with the corresponding diagnostic error message,
and detects/infers the parse state for you, reducing the maintenance problem when changing the
grammar. Merr also considers the current input token in deciding what error message to emit,
making it fundamentally more precise than Icon’s approach.

28.4 The Unicon Preprocessor

The Icon language originally did not include any preprocessor, but eventually, a simple one was
introduced, with ability to include headers, define symbolic constants (macros without parame-
ters), and handle conditional compilation (ifdef). The preprocessor implementation in Unicon was
written by Bob Alexander, and came to Unicon by way of Jcon, an Icon-to-JVM translator. This
preprocessor is written in a single 600+ line file, uni/unicon/preproce.icn.

The external public interface of the preprocessor is line-oriented, consisting of a generator
preproc(filename, predefinedsyms) which suspends each line of the output, one after another. Its
invocation from the main() procedure looks like:

yyin := ""
every yyin ||:= preprocessor(fName, uni_predefs) do

yyin ||:= "\n"
Since the preprocessor outputs line-by-line, there is a mismatch between it and the lexical ana-

lyzer’s big-inhale model. The preprocessor could be modified to fit better with the lexical analyzer
or vice versa.

The preprocessor function takes the filename to read from, along with a table of predefined
symbols which allows the preprocessor to respond to lines like

$ifdef _SQL
based on what libraries are available and how Unicon was built on a given platform.

The preprocessor() function itself starts each call off with initializations:
static nonpunctuation
initial {
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nonpunctuation := ≤&letters ++ &digits ++ ’ \t\f\r’
}

preproc_new(fname,predefined_syms)
The initialization code opens fname, creates empty stacks to keep track of nested $ifdef’s and

$include’s, initializes counters to 0 and so forth.
The preprocessor is line-oriented. For each line, it looks for a preprocessor directive, and if it

does not find one, it just scans for symbols to replace and returns the line. The main loop looks like
while line := preproc_read() do line ? {

preproc_space() # eat whitespace
if (="#" & match("line")) | (="$" & any(nonpunctuation)) then {

suspend preproc_scan_directive()
}

else {
&pos := 1
suspend preproc_scan_text()
}

}
The procedures preproc_scan_directive() and preproc_scan_text() work on special and ordinary

lines, respectively. The line is not a parameter because it is held in the current string scanning
environment. The preproc_scan_directive() starts by discardign whitespace and identifying the
first word on the line (which must be a valid preprocessor directive). A case expression handles
the various directives (define, undef, ifdef, etc.). Defined symbols are stored in a table. $ifdef and
$ifndef are handled using a global variable preproc_if_state to track the boolean conditions. A
count of $ifdef’s is maintained, in order to handle matching endif’s.

Include files are handled using a stack, but an additional set of filenames is kept to prevent
infinite recursion when files include each other. When a new include directive is encountered it
is checked against the preproc_include_set and if OK, it is opened. The including file (and its
associated name, line, etc) are pushed onto a list named preproc_file_stack. It is possible to run out
of open files under this model, although this is not easy under modern operating systems.

Include files are searched on an include file path, consisting of a list of directories given on an
optional environment variable (LPATH) followed by a list of standard directories. The standard
directories are expected to be found relative to the location of the virtual machine binaries.

The procedure preproc_scan_text has the relatively simple job of replacing any symbols by their
definitions within an ordinary source line. Since macros do not have parameters, it is vastly simpler
than in a C preprocessor. The main challenges are to avoid macro substitutions when a symbol is
in a comment or within quotes (string or cset literals). An additional issue is to handle multiline
string literals, which occur in Icon when a string literal is not closed on a line, and instead the
line ends with an underscore indicating that it is continued on the next line. Skipping over quoted
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text sounds simple, but is trickier than it looks. Escape characters mean you can’t just look for the
closing quote without considering what comes before it, and you can’t just look at the preceding
character since it might have been escaped, as in "\\". The code looks similar to:

repeat {
while tab(upto(’"\\’)) do {

case move(1) of {
"\\": move(1)
default: {

break break
}

}
}

# ...
if not match("_"„-1) then

break
⊂&subject := preproc_read() | fail
# ...
}

The code in preproc_read() for reading a line does a regular Icon read(); end of file causes the
preprocessor file_stack to be popped for the previous file’s information. Performance has not been
perceived as a significant problem, it it would be interesting to convert preproc_read() to use a big-
inhale model to see if any statistical difference could be observed. When an include is encountered
under a big-inhale, the saved state would contain the string of remaining file contents, instead of
the open file value.

28.5 Semantic Analysis

The Unicon translator’s semantic analysis is minimal, and revolves mainly around object-oriented
features such as inheritance and package imports. Before we can look at those things, we need to
look at the syntax tree structure.

In conventional YACC, a %union declaration is necessary to handle the varying types of objects
on the value stack including the type used for syntax tree nodes, but iyacc has no need of this
awkward mechanism: the value stack like all structure types can hold any type of value in each
slot. Similarly, tree nodes can hold children of any type, potentially eliminating any awkwardness
of mixing tokens and internal nodes. Of course, you do still have to check what kind of value you
are working with.

Parse Tree Nodes
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uni/unicon/tree.icn contains procedures to handle the syntax tree node data type, including both
the following declaration and the yyprint() traversal function we’ll be discussing in today’s lecture.

record treenode(label, children)
holds one node worth of information. For convenience, a procedure node(label, kids[]) takes an
arbitrary number of parameters and constructs the list of children for you. Leaves have a null
children field.

"Code Generation" in the Unicon Translator
In a regular preprocessor, there is no code generation, there is a text-filter model in which the

preprocessor writes out (modified) versions of the lines it reads in. In the Unicon translator, the
code that is written out is produced by a traversal of the syntax tree. The same technique might be
used by a "pretty printer". We will explore this aspect of the Unicon translator as the best available
demonstration of working with Unicon syntax trees. Later on we will consider more "real" code
generation in the virtual machine and the optimizing compiler.

Earlier we saw that the start symbol of the Unicon grammar had a semantic action that called a
procedure Progend(). We will cover most of that procedure next week since it is all about object-
orientation, but at the end Progend(), a call to yyprint() performs the tree traversal for code genera-
tion. A classic tree traversal pattern would look like:

procedure traverse(node)
if node is an internal node {

every child := ! node.children do traverse(child)
generate code for this internal node (postfix)
}

else
generate code for this leaf

end
The code generator traversal yyprint() is a lot more complicated than that, but fits the general

pattern. The main work done at various nodes is to write some text to the output file, yyout. Most
ordinary internal nodes are of type treenode as described above. But because there are several kinds
of internal nodes and several kinds of leaves, the "if node is an internal node" is implemented as a
case expression. Besides a regular treenode, the other kinds of internal nodes are objects of type
declaration, class, and argument list. For regular treenodes, another case expression on the node’s
label field is used to determine what kind of code to generate, if any, besides visiting children and
generating their code.

The default behavior for an internal node is to just visit the children, generating their code. For
ordinary syntax constructs (if, while, etc.) this works great and a copy of the code is written out,
token by token. But several exceptions occur, mainly for the pieces of Unicon syntax that extend
Icon’s repertoire. For example, packages and imports are not in Icon and require special treatment.

procedure yyprint(node)
static lasttok
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case type(node) of {
"treenode" : {

case node.label of {
"package": { } # handled by semantic analysis
"import": { print_imports(node.children[2]) }
# implement packages via name mangling
"packageref": {

if *node.children = 2 then
yyprint(node.children[2]) # ::ident

else { # ident :: ident
yyprint(node.children[1])
writes(yyout, "__")
outcol +:= ((* writes(yyout, node.children[3].s)) + 2)
}

}
New syntax constructs such as procedure parameter defaults and type restrictions, and variable

initializers, are other examples where the default traversal would output things illegal in Icon. They
are implemented by skipping some of the children (assignment and value) in the regular pass, and
adding extra code elsewhere, discussed below.

"varlist2"|"stalist2": { yyprint(node.children[1]) }
"varlist4"|"stalist4": {

yyprint(node.children[1])
yyprint(node.children[2])
yyprint(node.children[3])
}

Much of this special logic is orchestrated by the code for traversing a procedure; it can visit its
arguments and variable declarations and apply special rules to them.

"proc": {
yyprint(node.children[1])
every yyprint(node.children[2 to 3])
if exists_statlists(node.children[3]) then {

ini := node.children[4]
yyprint("\ninitial {")
if ini ˜=== EmptyNode then { # append into existing initial

yyprint(ini.children[2])
yyprint(";\n")
}

yystalists(node.children[3])
yyprint("\n}\n")
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}
else

every yyprint(node.children[4])
(node.children[1].fields).coercions()
yyvarlists(node.children[3])
yyprint(node.children[5])
yyprint(node.children[6])
}

The default behavior of visiting one’s children is very simple, as is the handling of other kinds
of internal nodes, which are objects. For the objects, a method Write() is invoked.

"error": fail
default:

every yyprint(!node.children)
}

"declaration__state" | "Class__state" | "argList__state":
node.Write(yyout)

The outer case expression of yyprint() continues with various kinds of leaf (token) nodes. These
mainly know how to write their lexemes out. But, a lot of effort is made to try to keep line and
column number information consistent. Variables outline and outcol are maintained as each token is
written out. Integers and string literals found in the syntax tree are written out as themselves. Since
they have no attached lexical attributes, they are a bit suspect in terms of maintaining debugging
consistency. It turns out the reason they occur at all, and the reason they have no source lexical
attributes, is that artificial syntax subtrees are generated to handle certain object-oriented constructs,
and within those subtrees strings and integers may be placed, which do not correspond to anywhere
in the source code.

"integer": {
writes(yyout, node); outcol +:= *string(node)
}

"string": {
node ? {

while writes(yyout, tab(find("\n")+1)) do {
outline+:=1; outcol:=1;
}

node := tab(0)
}

writes(yyout, node); outcol +:= *node
}

"Normally", tokens are written out at exactly the line and column they appear at in the source
code. But a myriad of constructs may bump them around. If the output falls behind (in lines,



430

or columns) extra whitespace can be inserted to stay in sync. If output gets ahead by lines, a
#line directive can back it up, but if output gets ahead by columns, there is nothing much one can
do, except make sure subsequent tokens don’t accidentally get attached/concatenated onto earlier
tokens. This occurs, for example, when the output code for an object-oriented construct in an
expression is longer than the source expression, perhaps due to name mangling. Specific token
combinations are checked, but the list here may be incomplete (possible BUG!). For source tokens,
not only might the line and column change, the filename could be different as well.

"token": {
if outfilename ˜== node.filename | outline > node.line then {

write(yyout,"\n#line ", node.line-1," \"", node.filename,"\"")
outline := node.line
outcol := 1
outfilename := node.filename
}

while outline < node.line do {
write(yyout); outline +:= 1; outcol := 1
}

if outcol >= node.column then {
# force space between idents and reserved words, and other
# deadly combinations (need to add some more)
if ((\lasttok).tok = (IDENT|INTLIT|REALLIT) & reswords[node.s][2]˜=IDENT)|

(((\lasttok).tok = NMLT) & (node.tok = MINUS)) |
((\lasttok).tok = node.tok = PLUS) |
((\lasttok).tok = node.tok = MINUS) |
((reswords[(\lasttok).s][2]˜=IDENT) & (node.tok=(IDENT|INTLIT|REALLIT)))|
((reswords[(\lasttok).s][2]˜=IDENT) & (reswords[node.s][2]˜=IDENT))

then
writes(yyout, " ")

}
else

while outcol < node.column do { writes(yyout, " "); outcol +:= 1 }
Most tokens’ lexemes are finally written out by writing node.s:

writes(yyout, node.s)
outcol +:= *node.s
lasttok := node
}

"null": { }
default: write("its a ", type(node))
}
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end
Keywords
Besides the large set of interesting reserved words, Icon and Unicon have another set of pre-

defined special words called keywords. These words are prefixed by an ampersand, for example,
&subject holds the current "subject" string being examined by string scanning. A procedure Key-
word(x1,x2) semantically checks that an identifier following a unary ampersand is one of the valid
keyword names. The valid names are kept in a set data structure.

28.6 Object Oriented Facilities

Unicon features classes, packages, and a novel multiple inheritance mechanism. These items are
implemented entirely within the Unicon translator. The Icon virtual machine thusfar has only the
slightest of extensions for object-orientation, specifically, the dot operator has been extended to
handle objects and method invocation.

The Unicon OOP facilities were originally prototyped as a semester class project in a "special
topics" graduate course. Writing the prototype in a very high-level language like Icon, and develop-
ing it as a preprocessor with name mangling, allowed the initial class mechanism to be developed
in a single evening, and a fairly full, usable system with working inheritance to be developed in the
first weekend. By the end of the semester, the system was robust enough to write it in itself, and
it was released to the public shortly afterwards as a package for Icon called "Idol". Many many
improvements were made after this point, often at the suggestion of users.

An initial design goal was to make the absolute smallest additions to the language that were nec-
essary to support object-orientation. Classes were viewed as a version of Icon’s record data type,
retaining its syntax for fields (member variables), but appending a set of associated procedures.
Because records have no concept of public and private, neither did classes. Another graduate stu-
dent criticized this lack of privacy, and for several versions, everything was made private unless an
explicit public keyword was used. But eventually support for privacy was dropped on the grounds
that it added no positive capabilities and was un-Iconish. The existence of classes with hundreds
of "getter" and "setter" methods was considered a direct proof that "private" was idiotic in a rapid
prototyping language.

The Code Generation Model for Classes
"unicon -E foo" will show you what code is generated for Unicon file foo.icn. If foo.icn contains

classes, you can enjoy the code generation model and experiment to see what it does under various
circumstances. As a first example, consider

class A(x,y)
method m()

write("hello")
end
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end
These five lines generate 25 lines for Icont to translate into virtual machine code. The first two

lines are line directives showing from whence this source code originated:
#line 0 "/tmp/uni13804206"
#line 0 "a.icn"
Global declarations (including procedures) would be passed through the preprocessor pretty

nearly intact, but for the class, we get a bunch of very different code. Methods are written out, with
names mangled to a classname_methodname format.

procedure A_m(self)

#line 2 "a.icn"
write("hello");

end
Two record types are defined, one for the class instances and one for the "methods vector",

or "operation record". The methods vector is instantiated exactly once in a global variable in
classname__oprec format.

record A__state(__s,__m,x,y)
record A__methods(m)
global A__oprec
The default constructor for a class takes fields as parameters and uses them directly for ini-

tialization purposes. The first time it is called, a methods vector is created. Instances are given a
pointer to themselves in an __s field (mainly for historical reasons) and to the methods vector in an
__m field. Current NMSU grad student Sumant Tambe did an independent study project to get rid
of __s and __m with partial success, but his work is not finished or robust enough to be enabled by
default.

procedure A(x,y)
local self,clone
initial {

if /A__oprec then Ainitialize()
}
self := A__state(νll,A__oprec,x,y)
self.__s := self
return self

end

procedure Ainitialize()
initial A__oprec := A__methods(A_m)

end
Symbols and Scope Resolution
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One of the basic aspects of semantic analysis is: for each variable, where was it declared, so we
can identify its address, etc. Unicon inherits from Icon the curious convenience that variables do
not have to be declared: they are local by default. This feature is implemented by deferring the local
vs. global decision until link time, so the Unicon translator has no local vs. global issues. Class
variables, however, have to be identified, and looked up relative to the implicit "self" variable. A
family of procedures in uni/unicon/tree.icn with names starting "scopecheck" go through the syntax
tree looking for such class variables. Like most tree traversals, this is a recursive process, and since
local and parameter declarations override class variables, there are helper functions to walk through
subtrees building mini-symbol tables such as local_vars in scopecheck_proc(node):

# Build local_vars from the params and local var expressions.
local_vars := set()
extract_identifiers(node.children[1].fields, local_vars)
extract_identifiers(node.children[3], local_vars)

Eventually, every identifier in every expression is checked against local_vars, and if not found
there, against the class variables stored in a variable self_vars:

self_vars := set()
every insert(self_vars, c.foreachmethod().name)
every insert(self_vars, c.foreachfield())
every insert(self_vars, (!c.ifields).ident)
every insert(self_vars, (!c.imethods).ident)

For an IDENT node, the tests boil down to:
if node.tok = IDENT then {

if not member(\local_vars, node.s) then {
if member(\self_vars, node.s) then

node.s := "self." || node.s
else

node.s := mangle_sym(node.s)
}

}
Undeclared locals and globals are mangled to include the current package name if there is one.
Inheritance
Inheritance means: creating a class that is similar to an existing class. In object-oriented litera-

ture there is "abstract inheritance" in which a class supports all the same operations with the same
signatures, and there is concrete inheritance in which actual code is shared. Early object-oriented
languages supported only concrete inheritance, while more recent languages tend to discourage it.
Unicon is not typed at compile time, so abstract inheritance is not a big deal. There are abstract
methods, and classes whose every method is abstract, but the use of abstract is mainly for docu-
mentation: subclass authors must provide certain methods. Anyhow, the syntax of inheritance in
Unicon is
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class subclass : super1 : super2 : ... ( ...fields... )
The semantics of inheritance, and particularly of multiple inheritance, are interesting in Unicon;

the implementation is relatively simple. An example of inheritance is given by class Class, from
uni/unicon/idol.icn

class declaration(name,fields,tag,lptoken,rptoken)
...

end
...
class Class : declaration (supers,

methods,
text,
imethods,
ifields,
glob,
linkfile,
dir,
unmangled_name,
supers_node)

Unique perspective on inheritance in Unicon comes from the actual acquisition of inherited data
fields and methods by the subclass. Some object-oriented languages do this inheritance "by aggre-
gation", creating a copy of the superclass in the subclass. This is fine, but it makes "overriding"
an anomaly, when overriding the parent with new/different behavior is entirely routine. Unicon
instead inherits by the child looking for things in the parent (and the parent’s parent, etc.) that they
don’t already have. In the above example, class declaration effectively appends 5 fields from class
declaration onto the end of its field list. The generated code for instances looks like

record Class__state(__s,__m,
supers,methods,text,imethods,ifields,
glob,linkfile,dir,unmangled_name,supers_node,
name,fields,tag,lptoken,rptoken)

The inheritance semantics is called "closure based" because the process of looking for things
to add from parent superclasses iterates until no new information can be added, after which the
subclass is said to be closed on its parents. Other forms of closure appear frequently in CS.

28.6.1 Implementing Multiple Inheritance in Unicon

The actual code in the Unicon translator is, by analogy to transitive closure, looking for things to
inherit via a depthfirst traversal of the inheritance graph. Multiple inheritance can be separated out
into two portions:
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1. a method transitive_closure() that finds all superclasses and provides a linearization of them,
flattening the graph into a single ordered list of all superclasses

2. a method resolve() that walks the list and looks for classes and fields to add.

Method transitive_closure() is one of the cleaner demonstrations of why Unicon is a fun lan-
guage in which to write complex algorithms. It is walking through a class graph, but by the way it
is not recursive.

method transitive_closure()
count := supers.size()
while count > 0 do {

added := taque()
every sc := supers.foreach() do {
if /(super := classes.lookup(sc)) then

halt("class/transitive_closure: _
couldn’t find superclass ",sc)

every supersuper := super.foreachsuper() do {
if / self.supers.lookup(supersuper) &

/added.lookup(supersuper) then {
added.insert(supersuper)

}
}

}
count := added.size()
every self.supers.insert(added.foreach())

}
end

Now, given that Unicon provides a depthfirst inheritance hierarchy semantics, what is wrong
with this picture? The code is stable and hasn’t needed changes in several years, so this question is
not fishing for syntax bugs, or claiming that there is a bug. But there is something odd.

The method resolve() within class Class finds the inherited fields and methods from the lin-
earized list of superclasses.

#
# resolve -- primary inheritance resolution utility
#
method resolve()

#
# these are lists of [class , ident] records
#
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self.imethods := []
self.ifields := []
ipublics := []
addedfields := table()
addedmethods := table()
every sc := supers.foreach() do {

if /(superclass := classes.lookup(sc)) then
halt("class/resolve: couldn’t find superclass ",sc)

every superclassfield := superclass.foreachfield() do {
if /self.fields.lookup(superclassfield) &

/addedfields[superclassfield] then {
addedfields[superclassfield] := superclassfield
put ( self.ifields , classident(sc,superclassfield) )
if superclass.ispublic(superclassfield) then

put( ipublics, classident(sc,superclassfield) )
} else if \strict then {

warn("class/resolve: ’",sc,"’ field ’",superclassfield,
"’ is redeclared in subclass ",self.name)

}
}
every superclassmethod := (superclass.foreachmethod()).name() do {

if /self.methods.lookup(superclassmethod) &
/addedmethods[superclassmethod] then {
addedmethods[superclassmethod] := superclassmethod
put ( self.imethods, classident(sc,superclassmethod) )

}
}
every public := (!ipublics) do {

if public.Class == sc then
put (self.imethods, classident(sc,public.ident))

}
}

end
Class and Package Specifications
In the "old days" of Unicon’s ancestor Idol, you could only inherit from a class that appeared

in the same source file. Anything else poses a librarian’s problem of identifying from what file to
inherit. Java, for instances, takes a brute-force approach of one class per file.
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Unicon generates in each source directory an NDBM database (named uniclass.dir and uni-
class.pag) that includes a mapping from class name to: what file the class lives in, plus, what su-
perclasses, fields, and methods appear in that class. From these specifications, "link" declarations
are generated for superclasses within subclass modules, plus the subclass can perform inheritance
resolution. The code to find a class specification is given in idol.icn’s fetchspec(). A key fragment
looks like

if f := open(dir || "/" || env, "dr") then {
if s := fetch(f, name) then {

close(f)
return db_entry(dir, s)
}

close(f)
}

Unicon searches for "link" declarations in a particular order, given by the current directory fol-
lowed by directories in an IPATH (Icode path, or perhaps Icon path) environment variable, followed
by system library directories such as ipl/lib and uni/lib. This same list of directories is searched for
inherited classes.

The string stored in uniclass.dir and returned from fetch() for class Class is:
idol.icn
class Class : declaration(supers, methods, text, imethods, ifields, glob, linkfile, dir,

unmangled_name, supers_node)
ismethod
isfield
Read
ReadBody
has_initially
ispublic
foreachmethod
foreachsuper
foreachfield
isvarg
transitive_closure
writedecl
WriteSpec
writemethods
Write
resolve
end
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The database routines used by Unicon are ancient. The version string is

This is GDBM version 1.7.3, as of May 19,1994.

and modern GDBM tools cannot be used to display the contents of uniclass.dir (they complain of a
“Malformed database file header”). However, in the src/gdbm directory, there are two utilities that
will display the contents of uniclass.dir: testgdbm and testndbm. They are not built by default but,
if needed, can be built using the Makefile in src/gdbm.

28.6.2 Unicon’s Progend() revisited

Having presented scope resolution, inheritance, and importing packages and inheriting classes from
other files via the uniclass.dir NDBM files, we can finally show the complete semantic analysis in
the Unicon compiler, prior to writing out the syntax tree as Icon code:

procedure Progend(x1)

package_level_syms := set()
package_level_class_syms := set()
set_package_level_syms(x1)
scopecheck_superclass_decs(x1)

outline := 1
outcol := 1
#
# export specifications for each class
#
native := set()
every cl := classes.foreach_t() do {

cl.WriteSpec()
insert(native, cl)
}

#
# import class specifications, transitively
#
repeat {

added := 0
every super := ((classes.foreach_t()).foreachsuper() | !imports) do {

if /classes.lookup(super) then {
added := 1
readspec(super)
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cl := classes.lookup(super)
if /cl then halt("can’t inherit class ’",super,"’")
iwrite(" inherits ", super, " from ", cl.linkfile)
writelink(cl.dir, cl.linkfile)
outline +:= 1
}

}
if added = 0 then break

}
#
# Compute the transitive closure of the superclass graph. Then
# resolve inheritance for each class, and use it to apply scoping rules.
#
every (classes.foreach_t()).transitive_closure()
every (classes.foreach_t()).resolve()

scopecheck_bodies(x1)

if \thePackage then {
every thePackage.insertsym(!package_level_syms)
}

#
# generate output
#
yyprint(x1)
write(yyout)

28.6.3 Other OOP Issues

The primary mechanisms for object-oriented programming that we have discussed so far include:
classes, method invocation, inheritance. There were certainly a few parts we glossed over (like
how a$super.m() is implemented.) The main way to look for additional issues we skipped is to read
uni/unicon/idol.icn, which handles all the object-oriented features and comes from the original Idol
preprocessor. Here are some thoughts from a scan of idol.icn:

• the preprocessor semi-parsed class and method headers in order to do inheritance. After the
real (YACC-based) parser was added, I hoped to remove the parsing code, but it is retained
in order to handle class specifications in the uniclass.dir NDBM files
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• The classes in idol.icn correspond fairly directly to major syntax constructs; the compiler
itself is object-oriented.

• Packages are a "virtual syntax construct": no explicit representation in the source, but stored
in the uniclass.dir database

• There is a curious data structure, a tabular queue, or taque, that combines (hash) table lookup
and preserves (lexical) ordering.

• Aggregation and delegation patterns are used a lot. A class is an aggregate of methods, fields,
etc. and delegates a lot of its work to objects created for subparts of its overall syntax.

28.6.4 On Public Interfaces and Runtime Type Checking

Object-oriented facilities are usually discussed in the context of large complex applications where
software engineering is an issue. We don’t usually need OOP for 100 line programs, but for 10,000+
line programs it is often a big help.

Besides classes and packages, Unicon adds to Icon one additional syntax construct in support of
this kind of program: type checking and coercion of parameters. Parameters and return values are
the points at which type errors usually occur, during an integration phase in a large project where
one person’s code calls another. The type checking and coercion syntax was inspired by the type
checks done by the Icon runtime system at the boundary where Icon program code calls the C code
for a given function or operator.

One additional comment about types is that the lack of types in declarations for ordinary vari-
ables such as "local x" does not prevent the Icon compiler iconc from determining the exact types of
well over 90% of uses at compile time using type inference. Type checking can generally be done
at compile time even if variable declarations do not refer to types... as long as the type information
is available across file and module boundaries.



Chapter 29

Networking, Messaging and the POSIX
Interface

Unicon’s system interface is greatly enriched compared with Icon, primarily in that it treats In-
ternet connections and Internet-based applications as ubiquitous, and extends the file type with
appropriately high-level capabilities. Fundamental TCP and UDP connections are a breeze using
the networking facilities, and common application-level protocols are supported via the messaging
facilities (see also the X11 graphics facilities and the SQL/ODBC database facilities for examples
where application-level networking is provided in Unicon). Portions of this chapter related to the
messaging facilities were contributed by their author, Steve Lumos.

29.1 Networking Facilities

29.1.1 Sockets in the Unicon File Functions

UNIX file abstractions allow certain low-level file I/O operations to be performed across either files
or network sockets. Unicon’s treatment of network connections as a special type of file uses the
same abstraction, but Icon’s existing file operations are written in terms of the higher-level buffered
file I/O in ANSI C.

In general, the file operations have to call different underlying C calls depending on what kind
of file is being used. File values in Unicon have a status word, and that word has various bits to
indicate whether the file is really a network connection, graphics window, database, etc.

29.1.2 Simultaneous Input from Different File Types

Modern applications may need to allow asynchronous input from all types of files. Unicon’s select()
originally used UNIX C’s select() function as-is to handle input from various network connections,
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including X Windows GUI input. MS Windows required an elaborate alternative to be developed,
since window input events do not arrive on file descriptors. Eventually, the UNIX implementation
was also migrated off the straight C select(), for greater flexibility in handling other file types. The
general approach is to break the input list of input file handles out into sublists of each type, and
handle them with separate calls, which must be repeated until some input is found. This polling
approach can waste CPU. A small delay is included in the loop to prevent the CPU burning.

29.2 Messaging Facilities

29.2.1 The Transfer Protocol Library

All of the message facilities are handled by the transfer protocol library (libtp). This library pro-
vides an abstraction of the many different protocols (HTTP, SMTP, etc) into a clear and consistent
API. Ease of adding support for new protocols and porting the entire library to new operating sys-
tem interfaces were primary design goals. These goals are both accomplished by using the AT&T
Labs discipline and method (DM) architecture described below.

29.2.2 Libtp Architecture

The key feature of the DM architecture is that it makes explicit two interfaces in the library: dis-
ciplines which hold system resources and define routines to acquire and manipulate them, and
methods which define the higher-level algorithms used to access these resources. This model fits
the problem of Internet transfer protocols nicely; the discipline abstracts the operating system in-
terface to the network, and there is a method for each protocol that defines communication with a
server only in terms of the discipline.

This architecture makes porting easy because you need only create a discipline for the new
system, which means writing 9 functions. The only currently-existing discipline handling both the
Berkeley Socket and WINSOCK APIs is only 400 lines long. Once a discipline exists, the new
system immediately gains all of the supported protocols.

29.2.3 The Discipline

The discipline is a C structure whose members are pointers to functions:

typedef struct _tp_disc_s Tpdisc_t; /* discipline */

typedef int (*Tpconnect_f)(char* host, u_short port, Tpdisc_t* disc);
typedef int (*Tpclose_f)(Tpdisc_t* disc);
typedef ssize_t (*Tpread_f)(void* buf, size_t n, Tpdisc_t* disc);
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typedef ssize_t (*Tpreadln_f)(void* buf, size_t n, Tpdisc_t* disc);
typedef ssize_t (*Tpwrite_f)(void* buf, size_t n, Tpdisc_t* disc);
typedef void* (*Tpmem_f)(size_t n, Tpdisc_t* disc);
typedef int (*Tpfree_f)(void* obj, Tpdisc_t* disc);
typedef int (*Tpexcept_f)(int type, void* obj, Tpdisc_t* disc);
typedef Tpdisc_t* (*Tpnewdisc_f)(Tpdisc_t* disc);

struct _tpdisc_s
{

Tpconnect_f connectf; /* establish a connection */
Tpclose_f closef; /* close the connection */
Tpread_f readf; /* read from the connection */
Tpreadln_f readlnf; /* read a line from the connection */
Tpwrite_f writef; /* write to the connection */
Tpmem_f memf; /* allocate some memory */
Tpfree_f freef; /* free memory */
Tpexcept_f exceptf; /* handle exception */
Tpnewdisc_f newdiscf; /* deep copy a discipline */
int type; /* (not used currently) */

};

These functions define a complete API for acquiring and manipulating all of the system re-
sources needed by all of the methods and (it is hoped) any conceivable method. By convention,
every discipline function takes a pointer to the current discipline as its last argument. (Every method
function takes a library handle which contains a pointer to the current discipline, so the discipline
functions are always available when needed.) The Tpdisc_t is an abstract discipline. In practice,
a new discipline will extend Tpdisc_t by at minimum adding some system dependent data such as
a Unix file descriptor or Windows SOCKET*. Here is the "Unix" discipline (it would be better
called the socket discipline since it works for the Berkeley Socket API and WINSOCK on multiple
systems):

struct _tpunixdisc_s
{

Tpdisc_t tpdisc;
int fd;

}

29.2.4 Exception Handling

The DM archtecture defines a very useful convention for exception handling. Exceptions are passed
as integers to the exceptf function along with some exception-specific data. The function can do
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arbitrary processesing and then return {-1, 0, 1}, which instructs the library to retry the opera-
tion (1), return an error to the caller (-1), or take some default action (0). Libtp uses constants
TP_TRYAGAIN, TP_RETURNERROR, and TP_DEFAULT.

Although not as powerful as languages with true exceptions, the DM exception handling defi-
nitely serves to make the code more readable. In the Unix discipline, exceptf is used to aggregate
all of the many, sometimes transient errors that can occur in network programming. For example,
the Unix discipline’s readf function is:

ssize_t unixread(void* buf, size_t n, Tpdisc_t* tpdisc)
{

Tpunixdisc_t* disc = (Tpunixdisc_t*)tpdisc;

size_t nleft;
ssize_t nread;
char* ptr = buf;

nleft = n;
while (nleft > 0) {

if ((nread = read(disc->fd, ptr, nleft)) <= 0) {
int action = tpdisc->exceptf(TP_EREAD, &nread, tpdisc);
if (action > 0) {

nread = 0;
continue;

}
else if (action == 0) {

break;
}
else {

return (-1);
}

}

nleft -= nread;
ptr += nread;

}
return (n – nleft);

}
The Unix read() system call can return a positive number, indicating the number of bytes read,

a negative number, indicated error, or zero, if end-of-file is reached (or a network connection is
closed by the remote host). We consider the latter two cases exceptional, and ask exceptf what we
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should do. An exceptf function is normally a large switch with one case for each exception. For
TP_EREAD, it says:

case TP_EREAD:
if (errno == EINTR) {

return TP_TRYAGAIN;
}

else {
ssize_t nread = (*(ssize_t*)obj);
if (nread == 0) { /* EOF */

return TP_DEFAULT;
}

else {
return TP_RETURNERROR;
}

}
This may not seem very revolutionary, after all the code that calls exceptf and branches on its

result is just as long as the exception handler itself. We aren’t even gaining much code-reuse over
the conventional method, which wraps system calls in another function with names like Read().
The real win here lies in the ability of the caller to replace or extend exceptf at runtime. You may
have noticed that there is no code above to output an error message, unixread() simply returns -1
on errors. In fact, the standard and expected way to output errors is to override exceptf. The wtrace
example shown [XXX: at the end somewhere?] uses the following:

Tpexcept_f tpexcept;
Tpdisc_t disc;

int exception(int e, void* obj, Tpdist_t* disc)
{

int rc = tpexcept(e, obj, disc);
if (rc == TP_RETURNERROR) {

if (errno != 0) {
perror(url);
}

else {
switch (e) {

case TP_HOST:
fputs(url, stderr);
fputs(": Unknown host\n", stderr);
break;

default:
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fputs(url, stderr);
fputs(": Error connecting\n", stderr);
}

}
exit(1);
}

else {
return rc;
}

}

Then instead of the usual:
tp = tp_new(<uri>, <method>, TpdUnix);
wtrace copies TpdUnix, saves and replaces the default exception handler, and then uses the

copied discipline:
disc = tp_newdisc(TpdUnix);
tpexcept = disc->exceptf;
disc->exceptf = exception;

tp = tp_new(<uri>, <method>, disc);
In the same way, wtrace also overrides all of the read and write functions to provide a trace log

of HTTP communications.



Chapter 30

ODBC Database Facilities

Unicon’s ODBC facilities were initially implemented by Federico Balbi for Microsoft Windows
platforms. Happily, ODBC has been widely ported and is one of Microsoft’s more open and suc-
cessful technical contributions.

30.1 Organization

The seven functions introduced for the ODBC interface are located in fdb.r. Over time it was
discovered that the only function that matters very much is sql(), and the others are somewhat
vestigial.

The underlying runtime system support functionality is in rdb.r. Initially, the runtime system
support consisted primarily of an ODBC-specific error message function, odbcerror(), along with
functions for opening and closing database connections. Early uses of the facilities led to the
revelation that the vast majority of the interface consists of type conversion and packaging of the
results of SQL queries in Unicon format, as records to be produced by calls to fetch(). Consequently,
the longest and most interesting function in rdb.r turns out to be the function dbfetch() that helps
the Unicon function fetch() to do its job.

In addition to the new files fdb.r and rdb.r, which together come to around 1000 lines of RTL
code, the database facilities introduced changes to several existing source files, under #ifdef ISQL
directives.

• fdefs.h: ODBC function definitions.

• grttin.h: fake type definitions for ODBC data types.

• rexterns.h: ISQLEnv extern definition.

• rmacros.h: Fs_ODBC file status flag and ODBC error codes.
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• rproto.h: contains odbcerror function definition.

• rstructs.h: ISQLFile definition (ODBC connection type).

• sys.h: ODBC header files inclusion (windows.h and sqlext.h).

• fxposix.ri: contains fetch(), defined also under Dbm

• init.r: ODBC Environment structure release.

• omisc.r: size operator (unary *) for ODBC file type.

• data.r: runerr error code for ODBC file mismatch.

30.2 ISQLFile type

In Unicon an ODBC connection to a database is treated as though similar to an open file. This tired
metaphor, borrowed from UNIX and Plan 9 for all forms of I/O, is fundamentally flawed, since
ODBC connections are not byte streams, nor are they text- or line-oriented. However, to the extent
that the “file” abstraction is really a generic reference to all types of operating system data sources
and sinks that must be opened and interacted with via read and write operations, the metaphor is
apt.

Internally an OBDBC connection is represented by the following C structure:

#ifdef ISQL /* ODBC support */
struct ISQLFile { /* SQL file */

SQLHDBC hdbc; /* connection handle */
SQLHSTMT hstmt; /* statement handle */
char *query; /* SQL query buffer */
long qsize; /* SQL query buffer size */
char *tablename;
struct b_proc *proc; /* record constructor for current query */
int refcount;
struct ISQLFile *previous, *next;
};

#endif

The field hdbc is used to keep the connection information associated to a particular ISQLFile
file. hstmt is the statement structure that saves the results or dataset returned by an ODBC opera-
tion. The design of the interface is table oriented, which means that for each table we open a new
connection.
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In the future we will consider the possibility to associate a file to a database. This would let us
open a connection for each database and share the same connection for each table within the same
database. In this way we can open a file and use more than a table.

Actually when open(DSN,"o",user,password) is called Unicon allocates an ISQLFile object and
initializes the structure fields in the following way:

• hdbc is related to the DSN specified in open()

• hstmt is related to hdbc
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Chapter 31

Portable 2D and 3D Graphics

Two-dimensional graphics were originally added to Icon version 8 out of a desire to use Icon for
software visualization. Visualization research called for rapid graphics prototyping and Icon is a
rapid prototyping language. The facilities were successful enough to warrant painstaking porting
(to OS/2 and then MS Windows) and documentation (Griswold wrote a larger book for the Icon
graphics facilities than the Icon book) efforts. Two elaborate graphic user interface libraries (with
interface builders) were developed, the first in Idol by Jon Lipp and Mary Cameron, and the second
in Unicon by Robert Parlett. Unicon Version 11 introduced a powerful set of 3D graphics facilities,
increasing the footprint of the graphics in the overall implementation.

This chapter describes the design and implementation internals of the 2D and 3D graphics
facilities and their window system implementation. It is intended for persons extending the graphics
facilities or porting Unicon to a new window system. This chapter is derived from Unicon Technical
Report #5, by Clint Jeffery, Naomi Martinez and Jafar Al Gharaibeh.

Much of the code is devoted to hiding specific features of C graphics interfaces that were
deemed overly complex or not worth the coding effort they entail. Other implementation tech-
niques are motivated by portability concerns. The graphics interface described below has been
implemented to various levels of completeness on the X Window System, Microsoft Windows,
OS/2 Presentation Manager, (pre OS X) Macintosh, and Borland Graphics Interface platforms.
Most of this discussion is relevant also for Icon Version 9; Unicon’s graphics facilities include
minor improvements.

31.1 Graphics Source Files Summary

Unicon’s window facilities consist of several source files, all in the src/runtime directory unless
otherwise noted. They are discussed in more detail later in this document.

header files – h/graphics.h contains structures and macros common across platforms. Each
platform adds platform-specific elements to the common window structures defined in this file. In

451



452

addition, each platform gets its own header file, currently these consist of X Windows (h/xwin.h)
and Microsoft Windows (h/mswin.h). Every platform defines several common macros in the
window-system specific header file in addition to its window system specific structures and macros.
The common macros are used to insert platform-dependent pieces into platform-independent code.

Unicon functions – fwindow.r contains the RTL (Run-Time Language) interface code used to
define built-in graphics functions for the Unicon interpreter and compiler. For most functions, this
consists of type checking and conversion code followed by calls to platform-dependent graphics
functions. The platform dependent functions are described later in this document; fwindow.r is
platform independent. You will generally modify it only if you are adding a new built-in function.
For example, the Windows native functions are at the bottom of this file.

internal support routines – rwindow.r, rwinrsc.r, rgfxsys.r and rwinsys.r are basically C files
with some window system dependencies but mostly consisting of code that is used on all systems.
For example, rwindow.r is almost 100 kilobytes of portable source code related to Unicon’s event
model, attribute/value system, portable color names, GIF and JPEG image file support, palettes,
fonts, patterns, spline curves and so forth.

window-system specific files – Each window system gets its own source files for C code,
included by the various r*.r files in the previous section. Currently these include rxwin.ri and rxrsc.ri
for X Windows, and rmswin.ri for MS Windows. Each platform will implement one or more such
r*.ri files. In addition, common/xwindow.c contains so many X Window includes that it won’t even
compile under UNIX Sys V/386 R 3.2 if all of the Unicon includes are also present – so its a .c file
instead of a .r file.

tainted "regular" Unicon sources – Many of the regular Unicon source files include code un-
der #ifdef Graphics and/or one or more specific window system definitions such as #ifdef XWindows
or #ifdef MSWindows. The tainted files that typically have to be edited for a new window system in-
clude h/grttin.h, h/features.h, h/rexterns.h, h/rmacros.h, h/rproto.h, h/rstructs.h, and h/sys.h. Other
files also contain Graphics code. This means that most of the system has to be recompiled with
rtt and cc after Graphics is defined in h/define.h. You will also want to study the Graphics stuff in
h/grttin.h since several profound macros are there. Also, any new types (such as structures) defined
in your window system include files will need dummy declarations (of the form typedef int foo;) to
be added there.

Under UNIX the window facilities are turned on at configuration time by typing
make X-Configure name=system

instead of the usual make Configure invocation. The X configuration modifies makefiles and de-
fines the symbolic constant Graphics in h/define.h. If OpenGL libraries are detected, configuration
enables them automatically. Similar but less automatic configuration handling is performed for
other systems; for example, an alternate .bat file is used in place of os2.bat or turbo.bat.

Graphics #define-d symbols
The primary, window-system-independent defined symbol that turns on window facilities is

simply Graphics. Underneath this parent #ifdef, the symbol XWindows is meant to mark all X
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Window code. Other window systems have a definition comparable to XWindows: for Microsoft
Windows it is MSWindows. Turning on any of the platform specific graphics #define symbols turns
on Graphics implicitly.

31.2 Structures Defined in graphics.h

The header file graphics.h defines a collection of C structures that contain pointers to other C struc-
tures from graphics.h as well as pointers into the window system library structures. The internals
for the simplest Unicon window structure under X11 are depicted in Figure 31.1. The picture is
slightly simpler under MS Windows, with no display state or related color or font management; on
the other hand MS Windows maps the Unicon context onto a large set of resources, including pens,
brushes, fonts and bitmaps.

Binding

Window State Context

Display State

Colors Fonts

Pixmap Display
Graphics Context

Window XFontStruct *

long

Iconx

Xlib

Figure 31.1: Internal Structure of an Unicon Window Value

At the top, Unicon level, there is a simple structure called a binding that contains a pointer to
a window state and a window context. Pointers to bindings are stored in the FILE * variable of the
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Unicon file structure, and most routines that deal with a window take a pointer to a binding as their
first argument. Beneath this facade, several structures are accessed to perform operations on each
window.

The window state holds the typical window information (size, text cursor location, an Unicon
list of events waiting to be read) as well as a window system pointer to the actual window, a pointer
to a backing pixmap (a "compatible device context" used to handle redraw requests), and a pointer
to the display state.

The window context contains the current font, foreground, and background colors used in draw-
ing/writing to the window. It also contains drawing style attributes such as the fill style. Contexts
are separate from the window state so that they may be shared among windows. This is a big win,
and Unicon programs tend to use it heavily, so in porting the window functions a central design
issue must be the effective use of a comparable facility on other window systems, or emulating
the context abstraction if necessary. Nevertheless, one might start out with Couple() and Clone()
disabled and only allow one hardwired context associated with each window.

The display state contains whatever system resources (typically pointers or handles) that are
shared among all the windows on a given display in the running program. For example, in X
this includes the fonts, the colors, and a window system pointer for an internal Display structure
required by all X library calls to denote the connection to the X server.

31.3 Platform Macros and Coding Conventions

Since the above structure is many layers deep and sometimes confusing, Unicon’s graphics inter-
face routines employ coding conventions to simplify things. In order to avoid many extra memory
references in accessing fields in the multi-level structure, "standard" local variables are declared
in most of the platform dependent interface routines in rxwin.ri and rmswin.ri. The macro STD-
LOCALS(w) declares local variables pointing to the most commonly used pieces of the window
binding, and initializes them from the supplied argument; each window system header should de-
fine an appropriate STDLOCALS(w) macro. Under some window systems, such as MS Windows,
STDLOCALS(w) allocates resources which must be freed before execution continues, in which case
a corresponding FREE_STDLOCALS(w) macro is defined.

Some common standard locals are wc, ws, stdwin, and stdpix. While wc, and ws are pointers
to structures copied from the window binding, stdwin, and stdpix are actual X (or MS Window)
resources that are frequently supplied to the platform-dependent routines as arguments. Each win-
dow system will have its own standard locals. For example, MS Windows adds stddc and pixdc
since it uses a device context concept not found in X11.

In much of the platform-dependent source code, the window system calls are performed twice.
This is because most platforms including X11 and MS Windows do not remember the contents
of windows when they are reduced to iconic size or obscured behind other windows. When the
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window is once again exposed, it is sent a message to redraw itself. Unicon hides this entirely,
and remembers the contents of the window explicitly in a window-sized bitmap of memory. The
calling of platform graphics routines twice is so common that a set of macros is defined in xwin.h
to facilitate it. The macros are named RENDER2 through RENDER6, and each of them takes an
Xlib function and then some number of arguments to pass that function, and then calls that function
twice, once on the window and once on the bitmap.

Platforms that provide backing store may avoid this duplicated effort. In practice however it
seems most window systems have redraw events even if they implement retained windows (for
example, MGR [Uhler88]).

31.4 Window Manipulation in rxwin.ri and rmswin.ri

The platform-dependent calls in the Unicon run-time system can be categorized into several major
areas:

• Window creation and destruction

• Low-level event processing

• Low-level text output operations

• Window and context attribute manipulation

31.4.1 Window Creation and Destruction

A graphics window is created when the Unicon program calls open() with file attribute "g". The
window opening sequence consists of a call to wopen() to allocate appropriate Unicon structures
for the window and evaluate any initial window attributes given in additional arguments to open().
After these attributes have been evaluated, platform resources such as fonts and colors are allocated
and and the window itself is instantiated. Under X, wopen() busy-waits until the window has
received its first expose event, ensuring that no subsequent window operation takes place before
the window has appeared onscreen.

A window is closed by a call to wclose(); this removes the on-screen window even if other
bindings (Unicon window values) refer to it. A closed window remains in memory until all Unicon
values that refer to it are closed. A call to unbind() removes a binding without necessarily closing
the window.
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31.4.2 Event Processing

The system software for each graphics platform has a huge number of different types of events.
Unicon ignores most of them. Of the remainder, some are handled by the runtime system code in
the .ri files implicitly, and some are explicitly passed on to the Unicon program.

Most native graphic systems require that applications be event-driven; they must be tightly
I/O bound around the user’s actions. The interaction between user and program must be handled
at every instant by the program. Unicon, on the other hand, considers this event-driven model
optional.

Making the event-driven model optional means that the Unicon interface must occasionally read
and process events when the Unicon program itself is off in some other computation. In particular,
keystrokes and mouse events must be stored until the user requests them, but exposure events
and resizes must be processed immediately. The Unicon interpreter pauses at regular intervals in
between its virtual machine instructions (the Unicon compiler emits polling code in its generated
C code, so window system facilities are supported by the compiler as well) and polls the system
for events that must be processed; this technique fails when no virtual machine instructions are
executing, such as during garbage collections or when blocked on file I/O.

On some platforms such as X, this probably could be done using the platform event queue
manipulation routines. Instead, the Unicon window interface maintains its own keystroke and
mouse event queue from which the Unicon functions obtain their events. This additional queue
makes the implementation more portable. Various window systems probably do not support queue
manipulation to the extent or in the same way that X does. It also provides the programmer with a
higher level event processing abstraction which has proven useful.

Window resizing is partly handled by the interface. The old contents of the window are retained
in their original positions, but the program is informed of the resize so it can handle the resize in
a more reasonable manner. As has already been noted exposure events are hidden entirely via the
use of a backing pixmap with identical contents for each window. The pixmap starts out the same
size as the window. It is resized whenever the window grows beyond one of its dimensions. It
could be reduced whenever the window shrinks, but then part of the window contents would be lost
whenever the user accidentally made the window smaller than intended.

The platform-dependent modules also contains tables of type stringint. These tables are sup-
ported by routines that map strings for various attributes and values to native window system integer
constants. Binary search is employed. This approach is a crude but effective way to provide sym-
bolic access "built-in" to the language without requiring include files. Additional tables mapping
strings to integers are found in the platform independent source files.
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31.4.3 Resource Management

One of the most important tasks performed by platform-specific graphics functions is the manage-
ment of resources, both the on-screen resources (windows) and the drawing context elements used
by the window system in performing output.

31.4.4 Memory Management and r*rsc.ri Files

Memory management for internal window structures is independent of Unicon’s standard memory
management system. Xlib memory is allocated using malloc(2).

Most internal Unicon window structures could be allocated in Unicon’s block region, but since
they are acyclic and cannot contain any pointers to Unicon values, this would serve little purpose
(Actually, it is probably the right thing to do, and will probably happen some day, but its just not
in the cards right now unless you feel like messing with the garbage collector.). In addition when
an incoming event is being processed it has to be matched up with the appropriate window state
structure, so some of the window structures must be easily reached, not lost in the block region.
The window interface structures are reference counted and freed when the reference count reaches
0.

31.4.5 Color Management

Managing colors under X Windows is painful. In particular, if the same color is allocated twice
the color table entry is shared (which is good) and that entry may only be freed once (which is
bad). For this reason, every color allocated by Unicon is remembered and duplicate requests are
identified and freed only once. In the general case it is impossible to detect when a particular color
is no longer being displayed, and so colors are only freed on window closure or when a window is
cleared.

31.4.6 Font Management

Unicon supports a portable font name syntax. Since the available fonts on systems vary widely,
"interesting" code has been written to support these portable names on various X servers. Each
window system may need to include heuristics to pick an appropriate font in the font allocation
routine in the window system’s r*.ri file.

31.5 External Image Files and Formats

Reading and writing window contents to external files is accomplished by the routines loadimage()
and dumpimage(), implemented in each platform’s window system specific file, such as rxwin.ri.
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These routines take a window binding and a string filename and perform the I/O transfer. Presently,
the file format is assumed to be indicated by the filename extension; this is likely to change. Ideally
Unicon should tolerate different file formats more flexibly, inferring input file formats by reading
the file header where possible, and running external conversion programs where appropriate.

GIF and JPEG files are self-identifying, so they are always recognized independent of name.
They are checked in system-independent code before platform-specific image reading code is in-
voked.

31.6 Implementation of 3D Facilities

In order to implement the 3D facilities, the Unicon runtime system was modified to support 2D
and 3D windows. The Unicon runtime system is written in a custom superset dialect of C called
RTL [Walker94]. The 3D facilities use the existing 2D facilities code for window creation and
destruction, as well as handling keyboard and mouse input.

31.6.1 3D Facilities Requirements

OpenGL 1.2 or later must be present on the system in order for Unicon’s 3D graphics facilities to
work. A check for this is performed in wopengl() which can be found in the file ropengl.ri. The
requirement of OpenGL 1.2 is based on the fact that the function glTexBind(), which make the
implementation of textures more efficient, is only available in OpenGL 1.2 and later.

Also needed for the Unicon 3D graphics facilities is a system that supports a true color visual
with a depth buffer of 16 and a double buffer. The requirement of a depth buffer is a necessity
to implement lighting. For lighting to work properly in OpenGL, a depth test must be performed,
hence the need of a depth buffer. A double buffer is needed to implement the list structure that is
used to redraw a window. More information can be found on redrawing of windows in section 7.3.

31.6.2 Files

Several existing files contain extensions to support the Unicon 3D graphics facilities under #ifdef
Graphics3D, including data.r (new runtime error codes), fwindow.r (new 3D functions), rmem-
mgt.r (3D window display lists), rxwin.ri and rmswin.ri (modified wopen() and wmap() to support
3d mode), rwindow.r (new 3D attributes), and graphics.h (new 3D fields in canvas and context
structures). Also a new file, ropengl.ri was added that contains the C helper functions for functions
in fwindow.r, rxwin.ri, and rwindow.r.
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31.6.3 Redrawing Windows

In the 2D graphics facilities, events that require the redrawing of a window are handled by using a
pixmap. Instead of using a pixmap, for the Unicon 3D graphics facilities, a Unicon list of lists is
created for each window opened in “gl” mode. This list of lists keeps track of all objects in a 3D
graphics scene. This list is called funclist and is found in the wstate structure of a "gl" window. The
individual lists of contain the function name and the parameters of that function. Also placed on the
list are attributes that affect the scene. These include dim, linewidth, texcoord, texture, texmode, and
fg. When a window receives an event that requires redrawing, the window is cleared, all attributes
are reset to the defaults, and the Unicon list of lists is traversed to redraw every object in the scene.

There are some functions and attributes that are not placed in the list. Instead they much either
modify the list or call the list to redraw the scene. The function EraseArea(), not only clears
the screen but also clears the contents of the list. The attributes light0-light7, eye, eyeup, eyedir,
and eyepos use the list to redraw the window with the new attributes. So if the position of a
light changes, the new lighting calculations are preformed and the scene is redraw. Besides these
functions and attributes, every function or attribute available in the 3D graphics facilities is placed
on this list. In is important to note that functions and attributes that have no effect in the 3D graphics
facilities are not placed in this list.

31.6.4 Textures

In OpenGL, textures can be one, two, or three-dimensional and are represented as multi-
dimensional arrays. In the Unicon 3D graphics facilities all texture are 2D dimensional, and rep-
resented as three-dimensional arrays. This array keeps track of the position and red, green, and
blue components of each pixel in the texture image. When a texture image is specified in a Uni-
con program, the texture is converted from the Unicon internal representation of the image to a
three-dimensional array. For most cases, this does not take a long time, but as a texture image gets
larger, the slower the application will run. Several measures have been taken in order to increase
the efficiency of converting the texture image into an array. Since lighting and texturing are fairly
expensive operations, especially if several lights are activated, these features are temporarily deac-
tivated. Despite these efforts, converting a "g" window to a texture is still fairly expensive. Possible
future work includes ways to speed up this process.

Instead of adding a texture to the list of lists as described in section 7.3, OpenGL’s internal
texture resources are used. OpenGL assigns to each texture a name. The names assigned to each
texture in a Unicon scene are stored in texname[], which can be found in a “gl” window’s context.
To ensure that a texture name is not reused, a call to glGenTextures() made which produces unused
texture names. When a texture is applied to the scene, only the index of the array texname[] is
stored in the list. When the list is traversed, a call to glBindTexture() is made which binds the
texture to the subsequent objects in the scene. One problem of using this representation of textures
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is that it places an upper bound on the number of texture used. This is because glGenTextures()
requires the number of texture names to generate. Also by using glBindTexture(), never deletes a
texture from the texture resources, possibly using up all texture resources. Future work might look
into when to delete a texture an ways to check when the texture resources have been used up.

31.6.5 Texture Coordinates

The primitives as mentioned in previous sections are cubes, tori, cylinders, disks, partial disks,
points, lines, polygons, spheres, line segments, and filled polygons. Some of these primitives are
drawn using different aspect of the OpenGL library, with some using the glu library. Points, lines,
line segments, polygons, and filled polygons are drawing using glBegin(), glEnd(), and vertices in
between the function calls. Cylinders, disks, partial disks, and spheres are implemented using the
glu library. They are considered to be gluQuadrics objects. Finally cubes and tori are a composition
of several polygons.

The texturing method used is influenced by the how the primitive is composed. For the prim-
itives built using the OpenGL library, default texture coordinates are obtain much differently than
those primitives built using the glu library. For those primitives built using glBegin() and glEnd(),
glTexGen() is used to determine the default parameters when "texcoord=auto". In order to use this
feature we must enable GEN_S and GEN_T with glEnable(). This generates texture coordinates for
a 2D textures. The texture coordinates for a torus are obtained in the same ways.

Primitives built using the glu library, have texture coordinates associated with them. These
texture coordinates can be obtained by calling gluQuadricTexture().The use of the glu texture coor-
dinates verses the OpenGL coordinates, is due to the fact that the glu texture coordinate look nicer.
In order to use these texture coordinates instead of the ones specified by OpenGL, it is necessary to
disable GEN_S and GEN_T. After the object has been drawn, GEN_S and GEN_T are turned back
on.

A cube uses default texture coordinates that map the texture onto each of the faces of a cube. In
order to use these default coordinates, it is necessary to disable GEN_S and GEN_T, similar to glu
objects.

31.7 Graphics Facilities Porting Reference

This section documents the window-system specific functions and macros that generally must be
implemented in order to port Unicon’s graphics facilities to a new window system. The list is
compiled primarily by studying fwindow.r, rwindow.r, and the existing platforms.

A note on types: w is a window binding pointer (wbp), the top level Unicon "window" value. i
is an integer, s is a string. wsp is the window state (a.k.a. canvas) pointer, and wcp is the window
context pointer. A bool return value returns one of the C macro values Succeeded or Failed, instead
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of the usual C booleans 1 and 0.

ANGLE(a)
Convert from radians into window system units. For example, under X these are 1/64 of a

degree integer values.

ARCHEIGHT(arc)
The height component of an XArc.

ARCWIDTH(arc)
The width component of an XArc.

ASCENT(w)
Returns the number of pixels above the baseline for the current font. Note that when Unicon

writes text, the (x,y) coordinate gives the left edge of the character at its baseline; some window
systems may need to translate our coordinates.

int blimage(w, x, y, width, height, ch, s, len)
Draws a bi-level (i.e. monochrome, 1-bit-per-pixel) image; used in DrawImage() which draws

bitmap data stored in Unicon strings.

wcp clone_context(w)
Allocate a new context, cloning attributes from w’s context.

COLTOX(w, i)
Return integer conversion from a 1-based text column to a pixel coordinate.

copyArea(w1, w2, x, y, width, height, x2, y2)
Copies a rectangular block of pixels from w1 to w2.

DESCENT(w)
Returns the number of pixels below the baseline for the current font.

DISPLAYHEIGHT(w)
Return w’s display (screen) height in pixels.

DISPLAYWIDTH(w)
Return w’s display width in pixels.

bool do_config(w, i)
Performs move/resize operations after one or more attributes have been evaluated. Config is a

word with two flags: the one bit indicates a move, the two bit indicates a resize. The desired sizes
are in the window state pointer, e.g. w->window->width.
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drawarcs(w, thearcs, i)
Draw i arcs on w, given in an array of XArc structures. Define an appropriate XArc structure

for your window system; it must include fields x, y and width and height fields accessible through
macros ARCWIDTH() and ARCHEIGHT(). Also, a starting angle angle1 and arc extent angle2,
assigned through macros ANGLE(), EXTENT(), and FULLARC.

drawlines(w, points, i)
Draw i-1 connected lines, connecting the dots given in points.

drawpoints(w, points, i)
Draw i points.

drawsegments(w, segs, i)
Draw i disconnected line segments; define an Xsegment structure appropriate do your window

system, consisting of fields x1, y1, x2, y2. This type definition requirement should be cleaned up
someday.

drawstring(w, x, y, s, s_len)
Draw string s at coordinate (x,y) on w. Note that y designates a baseline, not an upper-left

corner, of the string.

drawrectangles(w, rectangles, i)
Draw i rectangles. Define an XRectangle structure appropriate to your window system.

int dumpimage(w, s, x, y, width, height)
Write an image of a rectangular area in w to file s. Returns Succeeded, Failed, or NoCvt if the

platform doesn’t support the requested format. Note that this is the "platform- dependent image
writing function"; requests to write GIF or JPEG are handled outside of this function.

eraseArea(w, x, y, width, height)
Erase a rectangular area, that is, set it to the current background color. Compare with fillrect-

angles().

EXTENT(a)
Convert from radians into window system units. Under PresentationManager it had to convert

to units of 1/65536 of a circle along with a weird type conversion.

fillarcs(w, arcs, i)
Fill wedge-like arc sections (pie pieces). See drawarcs().

fillrectangles(w, rectangles, i)
Fill i rectangles. See drawrectangles().
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fillpolygon(w, points, i)
Fill a polygon defined by i points. Connect first and last points if they are not the same.

FHEIGHT(w)
Returns the pixel height of the current font, hopefully ASCENT + DESCENT.

free_binding(w)
Free binding associated with w. This gets rid of a binding that refers to w, without necessarily

closing the window itself (other bindings may point to that window).

free_context(wc)
Free window context wc.

free_mutable(w, i)
Free mutable color index i.

free_window(ws)
Free window canvas ws.

freecolor(w, s)
Free a color allocated on w’s display.

FS_SOLID
Define this to be the window system’s solid fill style symbol.

FS_STIPPLE
Define this to be the window system’s stippled fill style symbol.

FULLARC
Window-system value for a complete (360 degree) circle or arc.

FWIDTH(w)
Returns the pixel width of the widest character in the current font.

wsp getactivewindow()
Return a window state pointer to an active window, blocking until a window is active. Probably

will be generalized to include a non-blocking variant. Returns NULL if no windows are opened.

getbg(w, s)
Returns (writes into s) the current background color.

getcanvas(w, s)
Returns (writes into s) the current canvas state.



464

getdefault(w, s_prog, s_opt, s)
Get any window system defaults for a program named s_prog resource named s_opt, write

result in s.

getdisplay(w, s)
Write a string to s with the current display name.

getdrawop(w, s)
Return current drawing operation, one of various logical combinations of source and destination

bits.

getfg(w, s)
Returns (writes into s) the current foreground color.

getfntnam(w, s)
Returns (writes into s) the current font. This interface may get changed since a portable font

naming mechanism is to be installed. Name is presently always prefixed by "font=" (pretty stupid,
huh); must be an artifact of merging window system ports, will be changed.

geticonic(w, s)
Return current window iconic state in s, could "iconify" or whatever. Obsolete (subsumed by

canvas attribute, getcanvas()).

geticonpos(w, s)
Return icon’s position to s, an encoded "x,y" format string.

int getimstr(w, x, y, width, height, paltbl, data)
Gets an image as a string. Used in GIF code.

getlinestyle(w, s)
Return current line style, one of solid, dashed, or striped.

get_mutable_name(w, i)
Returns the string color name currently associated with a mutable color.

getpattern(w, s)
Return current fill pattern in s.

getpixel(w, x, y, long *rv)
Assign RGB value for pixel (x,y) into *rv.

getpixel_init(w, struct imgmem *imem)
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Prepare to fetch pixel values from window, obtaining contents from server if necessary. This
function does all the real work used by subsequent calls to getpixel().

getpointername(w, s)
Write mouse pointer appearance, by name, to s.

getpos(w)
Update the window state’s posx and posy fields with the current window position.

getvisual(w, s)
Write a string to s that explains what type of display w is on, e.g. "visual=x,y,z", where x

is a class, y is the bits per pixel, and z is number of colormap entries available. This X-specific
anachronism is likely to go away.

HideCursor(wsp ws)
Hide the text cursor on window state ws.

ICONFILENAME(w)
Produce char * for window’s icon image file name if there is one.

ICONLABEL(w)
Produce char * for icon’s title if there is one.

isetbg(w, i)
Set background color to mutable color table entry i. Mutable colors are not available on all

display types.

isetfg(w, i)
Set foreground color to mutable color table entry i. Mutable colors are not available on all

display types.

ISICONIC(w)
Return 1 if the window is presently minimized/iconic, 0 otherwise.

ISFULLSCREEN(w)
Return 1 if the window is presently maximized/fullscreen, 0 otherwise.

ISNORMALWINDOW(w)
Return 1 if the window is neither minimized nor maximized, 0 otherwise.

LEADING(w)
Return current integer leading, the number of pixels from line to line.

LINEWIDTH(w)
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Return current integer line width used during drawing.

lowerWindow(w)
Lower the window to the bottom of the stack.

mutable_color(w, dptr dp, i, C_integer *result)
Allocate a mutable color from color spec given by dp and i, placing result (a small negative

integer) in *result.

nativecolor(w, s, r, g, b)
Interpret a platform-specific color name s (define appropriately for your window system). Un-

der X, we can do this only if there is a window.

pollevent()
Poll for available events on all opened displays. This is where the interpreter calls the window

system interface. Return a -1 on an error, otherwise return count of how long before it should be
polled (400).

query_pointer(w, XPoint *xp)
Produce mouse pointer location relative to w.

query_rootpointer(XPoint *xp)
Produce mouse pointer location relative to root window on default screen.

raiseWindow(w)
Raise the window to the top of the stack.

bool readimage(w, s, x, y, int *status)
Read image from file s into w at (x,y). Status is 0 if everything was kosher, 1 if some colors

weren’t available but the image was read OK; if a major problem occurs it returns Failed. See
loadimage() for the real action.

rebind(w, w2)
Assign w’s context to that of w2.

RECHEIGHT(rec)
The height component of an XRectangle. Gets "fixed up" (converted) into a Y2 value if neces-

sary, in window system specific code.

RECWIDTH(rec)
The width component of an XRectangle. Gets "fixed up" (converted) into a X2 value if neces-

sary, in window system specific code.
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RECX(rec)
The x component of an XRectangle.

RECY(rec)
The y component of an XRectangle.

ROWTOY(w, i)
Return integer conversion from a 1-based text row to a pixel coordinate.

SCREENDEPTH(w)
Returns the number of bits per pixel.

int setbg(w, s)
Set the context background color to s. Returns Succeeded or Failed.

setcanvas(w, s)
Set canvas state to s, make it "iconic", "hidden" or whatever. A canvas value extension such as

fullscreen would go here. Changes in canvas state are tantamount to destroying the old window,
creating a new window (with appropriate size and style) and adjusting the pixmap size correspond-
ingly. Much of the associated logic, however, might be located in the event handlers for related
window system events.

setclip(w)
Set (enable) clipping on w from its context.

setcursor(w, i)
Turn text cursor on or off. Text cursor is off (invisible) by default.

setdisplay(w, s)
Set the display to use for this window; fails if the window is already open somewhere.

setdrawop(w, s)
Set drawing operation to one of various logical combinations of source and destination bits.

int setfg(w, s)
Set the context foreground color to s. Returns Succeeded or Failed.

setfillstyle(w, s)
Set fill style to solid, masked, or textured.

bool setfont(w, char **s)
Set the context font to s. This function first attempts to use the portable font naming mechanism;

it resorts to the system font mechanism if the name is not in portable syntax.
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setgamma(w, gamma)
Set the context’s gamma correction factor.

setgeometry(w, s)
Set the window’s size and/or position.

setheight(w, i)
Set window height to i, whether or not window is open yet.

seticonicstate(w, s)
Set window iconic state to s, it could be "iconify" or whatever. Obsolete; setcanvas() is more

important.

seticonimage(w, dptr d)
Set window icon to d. Could be string filename or existing pixmap (i.e. another window’s

contents). Pixmap assignment no longer possible, so one could simplify this to just take a string
parameter.

seticonlabel(w, s)
Set icon’s string title to s.

seticonpos(w, s)
Move icon’s position to s, an encoded "x,y" format string.

setimage(w, s)
Set an initial image for the window from file s. Only valid during open().

setleading(w, i)
Set line spacing to i pixels from line to line. This includes font height and external leading, so

i < fontheight means lines draw partly over preceding lines, i > fontheight means extra spacing.

setlinestyle(w, s)
Set line style to solid, dashed, or striped.

setlinewidth(w, i)
Set line width to i.

set_mutable(w, i, s)
Set mutable color index i to color s.

SetPattern(w, s, s_len)
Set fill pattern to bits given in s. Fill pattern is not used unless fillstyle attribute is changed to

"patterned" or "opaquepatterned".
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SetPatternBits(w, width, bits, nbits)
Set fill pattern to bits given in the array of integers named bits. Fill pattern is not used unless

fillstyle attribute is changed to "patterned" or "opaquepatterned".

setpointer(w, s)
Set mouse pointer appearance to shape named s.

setpos(w, s)
Move window to s, a string encoded "(x,y)" thing.

setwidth(w, i)
Set window width to i, whether or not window is open yet.

setwindowlabel(w, s)
Set window’s string title to s.

ShowCursor(wsp ws)
Show the text cursor on window state ws.

int strimage(w, x, y, width, height, e, s, len)
Draws a character-per-pixel image, used in DrawImage(). See blimage().

SysColor
Define this type to be the window system’s RGB color structure.

TEXTWIDTH(w, s, s_len)
Returns the integer text width of s using w’s current font.

toggle_fgbg(w)
Swap the foreground and background on w.

unsetclip(w)
Disable clipping on w from its context.

UpdateCursorPos(wsp ws, wcp wc)
Move the text cursor on window state ws and context wc.

walert(w, i)
Sounds an alert (beep). i is a volume; it can range between -100 and 100; 0 is normal.

warpPointer(w, x, y)
Warp the mouse location to (x,y).
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wclose(w)
Closes window w. If there are other bindings that refer to the window, they are converted into

pixmaps, i.e. the window disappears but the canvas is still there and can be written on and copied
from.

wflush(w)
Flush output to window w; a no-op on some systems.

wgetq(w, dptr result)
Get an event from w’s pending queue, put results in descriptor *res. Returns -1 for an error, 1

for success (should fix this).

WINDOWLABEL(w)
Produce char * for window’s title if there is one.

FILE *wopen(s, struct b_list *lp, dptr attrs, i, int *err_index, is_3d)
Open window named s, with various attributes. This ought to be merged from various window

system dependent files, but presently each one defines its own. Copy and modify from rxwin.ri or
rmswin.ri. The return value is really a wbp, cast to a FILE *.

wputc(c, w)
Draw character c on window w, interpret newlines, carriage returns, tabs, deletes, backspaces,

and the bell.

wsync(w)
Synchronize server and client (a no-op on most systems).

xdis(w, s, s_len)
Draw string s on window w, low-level.

XTOCOL(w, i)
Return integer conversion from a 0-based pixel coordinate to text column.

YTOROW(w, i)
Return integer conversion from a 0-based pixel coordinate to text row.

31.8 The X Implementation

The reference implementation of Unicon’s graphics facilities is written in terms of Xlib, the lower-
level X Window C interface [Nye88]. It does not use the X resource manager. The end result of
these two facts is that the implementation is relatively visible: the semantics are expressed fairly
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directly in the source code. Although it is necessary to understand the semantics of the underlying
X routines, hidden behavior has been minimized.

Unicon does not rely on the X Toolkit Intrinsics (Xt) or any higher level widget set such as
Motif. This guarantees that Unicon will compile and run on any X11 platform. Unicon programs
implement their own look and feel, which may or may not be consistent with the other applications
on a given X workstation. The Unicon Program Library includes routines that implement user
interface components with an appearance that is similar to Motif.

The X implementation employs the XPM X pixmap library if it is available; XPM is a file
format and API for storing color images in external files [LeHors96]. XPM provides color facilities
analogous to the built-in X black-and-white bitmap routines. In addition to the image formats native
to each platform, Unicon also supports GIF and JPEG as portable image file formats.

31.9 The MS Windows Implementation

The Microsoft Windows implementation of Unicon is written using Win32, the lower-level 32-bit
Windows API. It does not use the Microsoft Foundation Classes. This makes it easier to build with
different C compilers, and easier to port to different Windows implementations, such as Windows
CE.

31.9.1 Installing, Configuring, and Compiling the Source Code

Building Unicon for Windows requires Mingw32 GCC. We hope to add Cygwin GCC support
in the future. The sources may also build with modest revision under MS Visual C++. You are
encouraged to try building using other compilers, and send Unicon Project your configuration files.
You will need a robust Win32 platform to compile these sources; the build scripts and “make”
process tend to fail on older versions of Windows.

1. Unpack the sources.
Unpack uni.zip in such a way that it preserves its subdirectory structure. Unzip.exe is recom-

mended rather than WinZip. See Icon Project Document 243 [ipd243] for a picture of the directory
hierarchy. In particular, there should be a BIN directory along with the SRC directory under the
unicon/ directory.

2. Configure the sources.
Run "make W-Configure-GCC" (or "make W-Configure" under MSVC) to configure your

sources to build wiconx and wicont, the Unicon virtual machine interpreter, and the Unicon byte-
code compiler, with graphics facilities enabled.

3. Compile to make executables.
Run "make Unicon" to build the currently-configured binary set. It is worth discussing why I

provide makefiles instead of a project file for use in the Visual C++ IDE. The reason is that the
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source files for the Unicon virtual machine interpreter (generically called iconx; wiconx.exe in this
case) are written in an extended dialect of ANSI C called RTL [ipd261]. Files in this language
have the extension .r instead of .c and .ri instead of .h. During compilation, a program called rtt
(the run time translator) translates .r* files into .c files. If someone wants to show me how to insert
this step into the Visual C++ IDE build process, I would be happy to use their IDE. You can write
project files for the other C programs that make up the Unicon system, but most modifications to
the language are changes to the interpreter.

Notes on the MS Windows internal functions
The functions documented here are those most likely to be involved in projects to add features

to Windows Unicon.

handle_child(w, UINT msg, WPARAM wp, LPARAM lp)
This procedure handles messages from child window controls such as buttons. In many cases,

this enqueues an event on the Unicon window.

int playmedia(w, char *s)
This crude function will call one of several multimedia functions depending on whether s is the

name of a multimedia file (.wav, .mid, .rmi are supported) or an MCI command string.

int getselection(w, char *s)
Return the current contents of the clipboard text. The design of this and setselection() need to

be broadened a bit to support images.

int setselection(w, char *s)
Set the clipboard text to s.



Chapter 32

The Uniconc Optimizing Unicon Compiler

Author: Michael Wilder

This chapter describes the design and development of a set of extensions to the Iconc optimizing
compiler and to the Unicon translator to support each other. Taken together, these extensions form
an optimizing compiler for (almost all of) Unicon. The work was originally presented in [Wilder06]
and appears here in a revised form by permission of the author.

32.1 Overview

The Unicon translator translates Unicon programs into an extended dialect of Icon proper. The
Icon translator (Icont), executive (Iconx), and run-time library have been modified to accommodate
various extensions that have been made since the Icon language was “frozen” in the 1990’s. Unicon
programs are interpreted using the updated versions of Iconx and the run-time library.

Lexical, syntactic, and semantic analysis of Unicon is described in Chapter 27. Selected sum-
mary information is presented here to provide a context for the description of the modifications
made to the Unicon translator to support iconc.

In the area of syntax analysis, it is worth noting that the parse tree produced by Unicon is
a hybrid composed of generic treenodes and nodes representing semantically rich units such as
classes and methods. Actions associated with rules in the Unicon grammar create this hybrid parse
tree. Many of the transformations required to translate Unicon into Icon are performed during this
phase.

Semantic analysis of a Unicon unit begins with a parse tree traversal to identify and perform
name mangling on symbols associated with packages and classes. Transitive closure of the super-
class graph associated with any classes is performed, followed immediately by inheritance resolu-
tion for classes. The specification of any package or classes encountered are then written out to a
database for subsequent use. Methods associated with objects inserted into the parse tree during
syntactic analysis are invoked during semantic analysis to accomplish these tasks.

473
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Generating the Icon code for a given Unicon unit is accomplished by a traversal of the parse tree
for that unit. Methods associated with objects inserted into the parse tree during syntactic analysis
are again used to accomplish code generation. Readability of the final product is facilitated by
minor formatting calisthenics performed during this phase.

32.2 Uniconc Organization

The organization of the Uniconc compiler is somewhat atypical. The organizational peculiarities of
Uniconc and the tradeoffs associated with these peculiarities are described in the sections contained
in this chapter.

Uniconc is composed of three subsystems: a modified version of the Unicon translator
(Unicon∆), a modified version of the Iconc optimizing compiler (Iconc∆), and a modified ver-
sion of the Unicon run-time library (RTL∆). The purpose of each of these subsystems is largely
the same as its predecessor, but each has been modified to some degree in order to accomplish the
compilation of Unicon programs. The Unicon∆ subsystem translates programs presented in the
Unicon programming language into the Icon programming language. The Iconc∆ subsystem trans-
lates programs presented in the Icon programming language into the C programming language. The
RTL∆ serves to provide functionality commonly used in Unicon and Icon programs to a program
executing on a given platform.

The topology of Uniconc as depicted in Figure 32.1 reveals that Uniconc shares some similari-
ties with most traditional compilers while remaining fairly unique. There are three source languages
involved in Uniconc. There are effectively four levels of intermediate code in Uniconc. There are
two distinct phases of analysis and two distinct phases of synthesis in Uniconc.

32.3 Design Considerations

Uniconc is designed to facilitate experimentation. At the outset of this project the decision was
made to retain and modify the Unicon translator rather than eliminate it by extending the syntax
analyzer for Iconc to include Unicon constructs. This route was the shortest path to achieving the
compilation of Unicon programs. More importantly, this decision endowed Uniconc with attributes
that make it a useful tool for conducting code transformation experiments.

Intermediate code is produced by Uniconc at four points during the compilation process. Trans-
formations performed in the semantic analysis phase of Unicon∆ produce intermediate code that is
subsequently transformed by the optimization phase of Unicon∆ to produce Icon code acceptable
to Iconc∆. The Icon code produced by Unicon∆ is effectively another level of intermediate code.
Transformations performed in the semantic analysis phase of Iconc∆ produce intermediate code
that is subsequently transformed by the optimization phase of Iconc∆ before producing C code that
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Figure 32.1: Uniconc Topology

is compiled by the host C compiler of a given system. The C code produced by Iconc∆ is effec-
tively another level of intermediate code that is acted upon by the host C compiler. Each of these
levels of intermediate code provides a waypoint at which the overall progress of a code transforma-
tion experiment can be evaluated. These waypoints also enable the design of code transformation
experiments that span one or many levels of intermediate code. The transparency provided by
these waypoints decreases the turnaround time for code transformation experiments and thereby
increases the time that experimenters can devote to the design and analysis of transformations.

Early experiments with Iconc revealed many impressive features that were clearly of significant
value. The decision not to implement a new syntax analyzer for Iconc∆ also greatly reduced the
number of modifications that were required to produce Iconc∆ from Iconc, and thereby reduced the
likelihood of introducing errors into a formidable tool. This same decision increased the number
of modifications that were required to produce Unicon∆ from Unicon. Experience has shown,
however, that the expressivity and pliability of the Unicon programming language make Unicon∆

a great place to introduce modifications.
Time, in its varied disguises, is ever a design consideration. During the design of Uniconc,

a primary focus was the speed of compiled code. Early efforts in compiling Unicon programs
during this project produced unsatisfactory results in this area. The speedup of code compiled
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by Uniconc was gradually improved byperforming code transformation experiments with Uniconc
spanning single and multiple segments of intermediate code. The time required to complete code
transformation experiments in Uniconc was itself also gradually reduced, but never at the expense
of speedup in compiled code. The Uniconc compiler presented in this chapter is the result of many
code transformation experiments conducted with earlier versions of Uniconc.

32.4 Translation Model

Programming language translation is the heart of any compilation system. Code transformations
must be chosen carefully in order accomplish translation that preserves the semantics of program-
mer input while simultaneously producing the best possible mapping to target code in terms of
space-time constraints. The object-oriented Unicon programming language presents many chal-
lenges when translating into the procedural Icon programming language. Inheritance mechanisms
in the Unicon programming language present particularly acute challenges when translating into the
Icon programming language. Namespaces added by the Unicon programming language to provide
encapsulation mechanisms also require particular care to ensure that the integrity of a namespace
is not violated when translating into a procedural programming language such as Icon. The Unicon
programming language has always been a VM-based interpreted language until the advent of Uni-
conc. Symbol resolution responsibilities that were performed at run-time by the Unicon interpreter
require compile-time code transformations and symbol table manipulations that were not previ-
ously performed. The goal-directed nature of the Unicon and Icon programming languages poses
particularly challenging problems when translating into an imperative programming language such
as C. The intricacies involved in translating Icon into C were fortunately solved by the creators of
Iconc.

The topology of Uniconc predicates a translation environment that differs from most compilers.
Because the ultimate target language of Uniconc is C, traditional code transformational considera-
tions relating to specifics of the target architecture are not a primary concern. This is simultaneously
an advantage and a limitation. The peculiarity of generating intermediate code at effectively four
places in three forms during the Uniconc compilation process places added emphasis on the or-
der of application of code transformations in Uniconc, and likewise permits experimentation with
transformations that span multiple forms (or segments) of intermediate code.

Many of the code transformations that occur during the compilation of a Unicon program by
Uniconc are simple transformations that are applied within a single segment of intermediate code.
Code transformations that are applied across multiple segments of intermediate code in Uniconc
are referred to as compound or inter-segment transformations. The cumulative effect of an inter-
segment transformation in Uniconc depends upon a sequence of subtransformations applied at mul-
tiple segments. This phenomenon is referred to as inter-segment transformational dependency in
Uniconc. Many examples of simple code transformations appear throughout the remainder of this
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chapter. An example of a compound code transformation and the particular set of inter-segment
transformational dependencies it contains is detailed in Section 32.7.1.

Inter-segment transformations are inherently risky and require extensive experimentation. Care
must be taken to ensure that the sequence of subtransformations applied by an inter-segment trans-
formation do not produce side effects that nullify or otherwise dilute the efficacy of other transfor-
mations. Analysis of the results produced by an inter-segment transformation can be particularly
delicate and time consuming because the correctness of code is potentially affected at multiple
points in the translation stream.

32.5 The UNICON∆ Subsystem

The Unicon∆ subsystem of Uniconc is composed of three major phases as depicted in Figure 32.1.
Each of these phases is presented in a separate section in this chapter in order to enumerate the
major modifications that were necessary to these phases, and to illuminate the differences between
Unicon∆ and Unicon.

32.5.1 Syntax Analysis

A command-line switch (-C) was added that permits the Uniconc user to indicate whether the
Unicon source code is to be compiled or interpreted. This facility allows Uniconc to generate targets
that are interpreted by Iconx or targets that run natively on a specific platform. The behavior of
the Unicon∆ syntax analyzer is vastly different if the input source is intended to be compiled. This
divergence of behavior is necessary because symbol resolution responsibilities that were performed
at run-time by the Unicon interpreter require compile-time code transformations and symbol table
manipulations when producing compiled targets. Semantic actions associated with productions
in the Unicon grammar were modified to provide distinct functionality when Uniconc is used to
generate compiled targets. Multiple code transformations occur during the Unicon∆ syntax analysis
phase in the event that Uniconc is being used to produce a compiled result. The remainder of this
section describes areas where the behavior of the Unicon∆ syntax analyzer diverges from that of
the Unicon syntax analyzer when producing native versus VM-hosted targets.

The Icon programming language contains a grammatic construct that allows programmers to
incorporate library procedures in user-level code. The Icon expression

link strings, graphics

directs that the procedures in the strings and graphics modules be made available to the Icon source
currently being translated. The Unicon programming language inherits this construct from Icon,
and adds a similar grammatic construct known as packages. The following Unicon expressions

package lang
import gui, cog
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direct that the classes, declarations, and procedures found in the Unicon source currently being
translated be made part of the lang package, and that the classes, declarations, and procedures
found in the gui and cog packages be accessible in a syntactically convenient fashion by the Unicon
source currently being translated. The Unicon expression

package f00

creates or adds to a namespace f00, whereas the following expression

import f00

permits access to the symbols previously defined in the f00 namespace. The Iconc∆ parser was not
modified to accommodate these new Unicon constructs. Uniconc compensates for these constructs
by identifying each link or import target in a compilation and parsing it exactly once. Each new
link or import target encountered in a file that is itself a link or import target is also parsed. The
resolution and parsing of link and import targets continues until all targets have been parsed once.
This problem is solved by defining three tables in Unicon∆ called iconc_links, iconc_imports, and
iconc_parsed. Each time that a link or import expression is encountered during the parsing of a
Unicon source file, Uniconc resolves the targets associated with the expression. Each target that
is not already a member of the iconc_parsed table is added to the iconc_links or iconc_imports
table. After all input files specified on the Uniconc command-line are parsed, all members of the
iconc_links and iconc_imports tables are themselves removed from their respective table, parsed,
and added to the iconc_parsed table. This continues until there are no members remaining in the
iconc_links and iconc_imports tables. Handling the package and import constructs introduced by
Unicon in this fashion permits the compile-time symbol resolution required by Iconc∆ to perform
type inferencing without making any modifications to Iconc∆.

Actions associated with productions for invocations in the Unicon grammar have been mod-
ified in order to perform code transformations as the parse tree for a Unicon source file is being
populated. Different code transformations are performed depending upon the nature of the in-
vocation encountered. The primary motivation for performing these code transformations is to
reduce complex expressions in order to simplify vector table resolution in the Iconc∆ subsystem
at compile-time. Rules for invocations appearing in the Unicon programming language grammar
are shown in Figure 32.2. The expr11 nonterminal appearing in Figure 32.2 can produce many
grammatic constructs, including other invocations. The expr11 nonterminal permits Unicon pro-
grams to contain arbitrarily complex expressions that describe the entity containing the procedure
or method that is to be invoked. A sampling of invocations expressed in the Unicon program-
ming language and the corresponding transformations performed by Uniconc on these invocations
appears in Figure 32.3.

Consideration of Figure 32.3 reveals the nature of the transformations performed for invoca-
tions. A sequence of transformations are applied to each expression corresponding to an expr11
until the expression is reduced to an l-value held in a temporary Unicon variable. The types of
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expr11 : ...
| expr11 LPAREN exprlist RPAREN {

$$ := SimpleInvocation($1,$2,$3,$4);
} ;

| expr11 DOLLAR INITIALLY LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6)
} ;

| expr11 DOLLAR IDENT LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6)
} ;

| expr11 DOLLAR IDENT DOT INITIALLY LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6,$7,$8)
} ;

| expr11 DOLLAR IDENT DOT IDENT LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6,$7,$8)
} ;

Figure 32.2: Invocations in the Unicon Grammar

x.peek().uncouple(y) 7→1
(__1 := x.peek(x)) & __1.uncouple(__1,y);

(\n).g.k.get(23) 7→2
((__5 := (__4 := (\n).g) & __4.k) & __5.get(23));

self$buf.initially() 7→3
(self) & (buf__oprec.initially(self));

(\f)$buf.initially() 7→4
\(f) & (buf__oprec.initially(f));

every (!a)$buf.initially() 7→5
every ((__2:=(!a))) & (buf__oprec.initially(__2));

Figure 32.3: Sample Uniconc Invocation Transformations
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l-values held in temporary variables are examined during the semantic analysis phase of Iconc∆ to
determine whether further transformations are required in order to reproduce the semantics of the
original invocation. In transformation 7→2 depicted in Figure 32.3, the type of the l-value __5 must
be ascertained in order to determine whether or not the invocation of get is the invocation of a field
or a method. If the type of the l-value __5 is not an instance of a class, no subsequent transforma-
tions are required to convey the semantics of the original invocation. In the event that the type of
the l-value __5 is an instance of a class, another transformation must be applied to the invocation
in order to add the implicit “self” parameter when invoking the method get so that proper state of
the class instance __5 will be maintained and semantic closure can be attained. If __5 is an in-
stance of a class, the transformation depicted in Figure 32.3 is part of a compound or inter-segment
transformation, and the insertion of the implicit self argument to attain semantic closure satisfies
the inter-segment transformational dependency introduced by the initial transformation depicted in
Figure 32.3.

The remaining transformations depicted in Figure 32.3 are simple transformations. In each
of these transformations, enough information has been gleaned during the syntax analysis phase
of Unicon∆ to unambiguously determine a single transformation that attains semantic closure with
the original invocation. In the case of the invocation of a superclass method, as depicted in transfor-
mations 7→3, 7→4, and 7→5 of Figure 32.3, transformations in Unicon∆ must discard the $ operator
because it is an extension of Icon proper. Earlier versions of Uniconc deferred method resolution
until run-time. As experimentation with code transformations in Uniconc progressed, increasing
subsets of functionality were added to the compiler and this methodology was discarded where pos-
sible in order to produce more efficient run-time behavior of compiled programs. In the rare event
that the resolution of a method cannot be accomplished unambiguously at compile-time, Iconc∆

generates code in the form of a C switch statement to achieve resolution of a method at a given code
point at run-time.

Actions associated with productions for field references in the Unicon grammar have been
modified in order to perform code transformations as the parse tree for a Unicon source file is
being populated. Different code transformations are performed depending upon the nature of the
field reference encountered. Because a field reference in the Unicon programming language can
be produced by the expr11 nonterminal in the Unicon grammar, chains of field references are
reduced to l-values held in temporary Unicon variables. As is the case with method invocations,
these l-values are examined during the semantic analysis phase of Iconc∆ in order to ascertain the
type of the entity to which a field reference is being made. The reductions performed by the code
transformations applied to field references improve the quality of the code generated by Iconc∆ by
reducing the work necessary to unambiguously determine the parent record or class containing a
given named field.

The reductions performed by the code transformations applied to field references also improve
the efficiency of compiled targets by ensuring that field references are not unnecessarily evalu-
ated when inserting an implicit “self” argument in an invocation that has a field-reference as a
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constituent expr11. In the following code snippet

x := r.o.m(23)

the implicit “self” argument that should be added to this invocation is r.o. A transformation applied
producing this result

x := r.o.m(r.o,23)

would generate a superfluous second evaluation of r.o. A transformation that reduces the expression
to an l-value before inserting the implicit argument produces

x := ((__1 := r.o) & __1.m(__1,23));

thereby saving the evaluation of a field reference at run-time. A fundamental problem solved by
expression reduction in this case is revealed when attempting to determine the primary nature of
r.o. In the example depicted above, if r.o is not an instance of a class, no transformation is required
to achieve semantic closure. Determining whether r.o is an instance of a class is occasionally
problematic in Unicon∆. In such cases, Unicon∆ will produce a transformation of the form

x := ((__1 := r.o) & __1.m(23));

and defer resolution of the type of r.o until after type inferencing is performed during the semantic
analysis phase of Iconc∆. If type inferencing reveals that __1 (and thereby r.o) is an instance of a
class, semantic closure of the compound transformation initiated in Unicon∆ will be achieved by
inserting the implicit __1 as the first argument in the invocation of m.

32.5.2 Semantic Analysis

The semantic analysis phase of the current version of Unicon∆ contains only minor modifications
to accommodate Uniconc. Earlier versions of Uniconc contained extensive modifications to the
semantic analysis phase of Unicon∆. Most of the modifications that were present in the Unicon∆

semantic analysis phase of these earlier versions of Uniconc were mothballed after a system was
devised to distinguish between class instances and record instances in Iconc∆. Before this system
was devised, a separate pass over the parse tree during the semantic analysis phase of Unicon∆

was necessary in order to attempt to disambiguate invocations and field references. The results
produced by this additional pass were not of the same caliber that are currently achieved by defer-
ring disambiguation until after type inferencing is performed during the semantic analysis phase of
Iconc∆. The system devised to distinguish between class instances and record instances in Iconc∆

is described in Section 32.6.1, and is employed in an optimization described in Chapter 32.7.
During the semantic analysis phase of Unicon∆, the parse tree is pruned of all nodes corre-

sponding to package and import expressions. This pruning is necessary because Iconc∆ has no
knowledge of these grammatic constructs. The parse tree is also pruned of nodes corresponding
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to link expressions because Unicon∆ handles all such expressions for compiled targets in order to
resolve any package or import expressions that may be present within a file that is itself the target
of a link expression. Checks are performed during this pruning to ensure that all package, import,
and link expressions have been correctly resolved.

32.5.3 Code Generation

Minor modifications to the code generation phase of Unicon∆ were made in order to remove tail
recursion from Unicon procedures that are recursively invoked while emitting generated Icon code.
These modifications were made after exhausting space resources during the code generation phase
of Unicon∆ on some computational platforms. These modifications are active whether a given
target is to be interpreted or compiled.

Transformations are applied to Icon code generated by the Unicon∆ code generation phase in
order to produce Icon code that decreases the number of field references required to accomplish
the invocation of a Unicon method. This series of transformations is detailed in Section 32.7.1.
The series of transformations performed at this point fundamentally modifies the representation of
Unicon programming language class instances in Icon code generated by Unicon∆ and are therefore
only performed for targets that are to be compiled. These transformations are accomplished in
a separate post-processing pass over the Icon code generated by Unicon∆. This additional pass
imparts visibility into the transformational mappings produced, thereby reducing the amount of
time required to analyze the results of code transformation experiments performed at this point. As
experiments with this series of transformations progresses, they may become part of the Unicon∆

code generator proper and not require a separate pass over the Icon code generated by Unicon∆.

32.6 The ICONC∆ Subsystem

The Iconc∆ subsystem of Uniconc is composed of three major phases as depicted in Figure 32.1.
Each of these phases is presented in a separate section in this chapter in order to enumerate the
major modifications that were necessary to these phases, and to illuminate the differences between
Iconc∆ and Iconc.

32.6.1 Syntax Analysis

Record types are a primary vehicle for data abstraction in the Icon programming language. The
Unicon programming language extends the notion of a record type by permitting users to declare
and instantiate classes. Classes in Unicon are ultimately represented as Icon records before being
interpreted or compiled. In certain cases it is very important to be able to differentiate between
Icon records that represent Unicon classes and Icon records that represent Icon records. Invoca-
tions, as described in Section 32.5.1, are an example of this necessity. Classes in Unicon have
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record class1__state(...)
record class1__methods(...)
global class1__oprec := class1__methods(...)

Figure 32.4: Simplified Unicon Class Representation

fundamentally different semantics than records in Icon. When it is impossible to differentiate be-
tween records that represent classes and records that represent records, information and therefore
code transformational leverage are lost. In such a case, the designer of code transformations must
choose to endow records with the same semantic properties as classes, to demote classes to the
semantic equivalent of records, or to defer differentiation until run-time. None of these choices is
particularly appealing.

It was recognized early on during the course of this project that the information lost by repre-
senting classes as records was information that had to be reclaimed. It was also recognized that
requiring the type inferencing phase of Iconc∆ to perform significantly more computation or to
consume more space as a result of this reclamation was not an option. Multiple experiments were
performed before settling on an approach that balances the performance requirements of compiled
code with the performance requirements of compiling code.

Each Unicon class is translated into a pair of Icon record declarations. These declarations con-
tain a unique signature that can be detected at compile-time. A complete example of the Icon code
produced for a Unicon class is shown in an appendix in [Wilder06]. A simplified representation of
the Icon code produced for a Unicon class is depicted in Figure 32.4. Referring to this simplified
representation reveals that a Unicon class named class1 is translated into a pair of Icon record dec-
larations. The record class1__state contains all of the data members associated with an instance
of any class1, and the singleton instance of class1__methods called class1__oprec contains the
operations shared by any class1 instances. It should be noted that this is a simplification for the
sake of discussing the method that was devised to distinguish between record instances and class
instances during the compilation of a Unicon program. The actual representation of Unicon classes
is transformed extensively by a post-processor in order to reduce the time required to perform a
method invocation in Unicon programs compiled by Uniconc, and to reduce the space consumed
by a class instance in Unicon programs compiled by Uniconc.

During the syntax analysis phase of Iconc∆, each record declaration is added to a list of record
entries of type struct rentry detailing the record types that are present in a program. Each global
entity detected by Iconc∆ is ascribed a set of attributes or flags that denote the nature of said entity.
In the case of a record declaration, the flag F_Record is ascribed. Iconc∆ has been modified to add
another attribute, called F_Object, that is ascribed in the event that a record declaration conforms
to the unique signature indicating that it is the representation of a class instance. This attribute is
checked during the semantic analysis and code generation phases of Iconc∆ in order to perform
transformations that increase the efficiency of compiled code.
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dbcol := ["col_1", "col_2"]
ctor := constructor("dbrow", dbcol[1], dbcol[2])
every i := 1 to *dbrows do {

r := ctor(dbrows[i][1], dbrows[i][2])
write("row: ", i, " col[1]: ", r.col_1, "col[2]: ", r.col_2)
}

Figure 32.5: Dynamic Records in Unicon

Further modifications to Iconc∆ have been made in order to reclaim the semantics of classes.
During the syntax analysis phase, Iconc∆ detects operations records (xxx__oprec) instances and
creates a vector table (vtbl) corresponding to each operation record instance encountered. These
vtbls are accessed during the semantic analysis and code generation phases of Iconc∆ in order to
reduce the number of field references required to perform a method invocation in compiled Unicon
programs. Vector tables are logical wrappers that encapsulate global entries of type struct gentry
in Iconc∆ and provide an interface for membership queries. Each vtbl is a lightweight construct
requiring the space of two compile-time pointers.

The Unicon programming language extends the notion of a record type by permitting the in-
stantiation of records whose form is not known until run-time. This language feature known as
dynamic records is illustrated in Figure 32.5.

This language feature is based upon and exploits run-time information for which there exists no
compile-time analog. Uniconc makes a limited effort to determine the number of dynamic records
that may be instantiated at run-time. It is necessary for Iconc∆ to know the number of record types
that may be instantiated at run-time in order to efficiently perform type inferencing during the
semantic analysis phase. The design of Iconc∆ predicates that the number of types be known and
fixed before type inferencing is performed. The syntax analysis phase of Iconc∆ has been modified
to detect invocations of the constructor function and to create new record entries of the form struct
rentry. Each struct rentry created contains the type name of the record and the name and number
of the record fields when it is possible to determine this information at compile-time. The number
of dynamic records encountered during syntax analysis is tabulated, and this information is used
by Iconc∆ to perform type inferencing. The starting index of dynamic records is embedded in the
code generated for a compiled Unicon program. This information embedded in the generated code
is used to synchronize the RTL∆ with the compiled program in order to ensure that the RTL∆ does
not assign record numbers to dynamic records in the constructor function that collide with record
numbers used for non-dynamic records in a given program. The RTL∆ has been modified in order
to permit the instantiation of dynamic records at run-time in compiled Unicon code. Empirical
evidence suggests that the technique to avoid record number collisions at run-time in compiled
Unicon programs is effective.
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case N_Invok:
/*
* General invocation.
*/
infer_nd(Tree1(n)); /* thing being invoked */

if (Tree1(n)->n_type == N_Field && fldref_is_class(Tree1(n))) {
methodinvok_add_implicit_self(n);
}

/*
* Perform type inference on all the arguments and copy the
* results into the argument type array.
*/
sav_argtyp = arg_typs;
sav_nargs = num_args;

Figure 32.6: Examining Invocations in Iconc∆

32.6.2 Semantic Analysis

The semantic analysis phase of Iconc∆ has been modified in order to identify and complete code
transformations initiated in Unicon∆. Each parse tree node representing an invocation is examined
during type inferencing in order to identify inter-segment transformational dependencies that re-
main unsatisfied. Invocation nodes that type inferencing indicates are fields that have the attribute
F_Object are further examined to determine whether an implicit “self” argument must be added
to the argument list of the invocation in order to satisfy an inter-segment transformational depen-
dency. If an unsatisfied dependency exists, the parse tree node corresponding to the invocation is
modified in order to achieve semantic closure. Each modified invocation node is marked to prevent
superfluous examinations. The parse tree transformations performed during the semantic analysis
phase of Iconc∆ are simplified by the parse tree transformations performed during the syntax analy-
sis phase of Unicon∆. Many fruitless experiments were performed before determining an effective
method of coordinating inter-segment transformations between Unicon∆ and Iconc∆. The C code
to examine invocations during type inferencing is depicted in Figure 32.6. The C code to insert an
implicit self in a method invocation is depicted in Figure 32.7.

The model used by Iconc∆ to evaluate subexpressions during type inferencing has been mod-
ified. The necessity of this modification was exposed during the analysis of code transformation
experiments that did not provide semantic closure for a specific domain of expressive inputs. Ex-
pressions of the form



486

static
void
methodinvok_add_implicit_self(n)

struct node * n;
{

int i;
int nargs;
struct node * t;
struct node * lhs;

nargs = Val0(n);
lhs = Tree0(Tree1(n)); /* lhs of subordinate N_Field */

if (nargs > 0 && (n->n_field[2].n_ptr->n_col == 123456789 ||
(n->n_field[2].n_ptr->n_type == lhs->n_type &&
n->n_field[2].n_ptr->n_field[0].n_ptr ==
lhs->n_field[0].n_ptr))) {
/*
* We have already added the implicit self arg to this
* method call in an earlier typinfer iteration, or it
* was supplied in the unicon-generated code; move on.
*/
return;
}

t = dupnode(lhs);
t->n_col = 123456789; /* mark this node as visited */
i = node_descendants(n);
n->n_field[nargs+2].n_ptr = NewNode(i);
for (i=nargs; i>0; i–)

n->n_field[i+2].n_ptr = n->n_field[i+1].n_ptr;
Val0(n) += 1;
n->n_field[2].n_ptr = t;

}

Figure 32.7: Implicit Self Insertion in Iconc∆
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every i := 1 to 5 do {
((__1 := (__1:=
k.nodes_table[i])) &
(if __1["add_opening"] then __1.add_opening()
else (__1.__m.add_opening(__1)))) ;
};

Figure 32.8: Subexpression Propagation Example

procedure main(argv)
local n, k;

k := 3;
n := (n := (2 * k));
write("n: ", image(n));

end

Figure 32.9: Simple Subexpression Propagation Example

e1 := e2

were incorrectly evaluated if subexpression e2 contained an assignment to the same l-value repre-
sented by subexpression e1. The sequence of types assumed by an Icon variable during a chain
of assignments was in some cases not being propagated beyond the first subexpression in which
an assignment was made to said variable. This applicative anomaly was perturbed by generating
code in Unicon∆ that aggressively reused temporary variables. An example of code generated by
Unicon∆ that provoked this behavior is shown in Figure 32.8. In this example, the type held in
the temporary __1 was not propagated to the expression containing the ultimate assignment to __1,
and the code generated by Iconc∆ for the entire righthand side of the conjunctive was invalid. A
simpler, hand-crafted example depicting a scenario where this behavior was present is shown in
Figure 32.9.

Investigation revealed that the applicative order of expression evaluation was being violated
during type inferencing in Iconc. The type information associated with the innermost assignment
to __1 in Figure 32.8 was being cleared in order to produce the type information pertaining to
the ultimate assignment to __1. The immediate workaround for this problem was to implement
transformations in Unicon∆ that were lax in their use of temporary variables. The semantic analysis
phase of Iconc∆ was eventually modified to perform an additional check during type inferencing
to ensure that type information associated with a variable is not cleared before said information is
used to update the type information associated with the same variable.
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32.6.3 Code Generation

The code generation phase of Iconc∆ has been modified to capitalize on the modifications intro-
duced in Section 32.6.1 that permit compile-time differentiation between records representing class
instances and records representing records. The primary motivation behind these modifications is
to increase the efficiency of method invocations in compiled Unicon programs.

Logic has been added inside Iconc∆ to examine field references during code generation. Any
detected references to fields within records that represent class instances are passed to additional
logic that queries the vtbl (vector table) of the represented class to perform symbol resolution. If
a field reference is an invocation and the record containing the field represents a class instance,
control is passed to additional logic that generates an invocation of the resolved method. Method
invocations are generated using generic Icon descriptors so that the run-time reassignment of meth-
ods will not produce erroneous results. Adversarial programs can be constructed that will prevent
the current version of Uniconc from correctly determining at compile-time whether an invocation
is a procedure or method. In such a case, the current version of Uniconc generates invalid code.
Research is currently underway to generate code to differentiate between method and procedure
invocations at run-time in the case where compile-time information is insufficient to perform com-
plete disambiguation.

32.7 Optimizations In Compiled Targets

This section describes optimizations that Uniconc currently performs when generating compiled
targets. Some of these optimizations are specifically tailored for compiled Unicon targets, whereas
others are applied when generating either compiled Icon or Unicon targets. Each proposed opti-
mization is presented in a separate section containing appropriate background material, the nature
of the optimization, and the preliminary results obtained by applying the optimization.

32.7.1 Representation of Class Instances

This section describes a proposed Uniconc optimization that fundamentally modifies the represen-
tation of class instances in compiled Unicon targets. This optimization is aggressive and fairly
complex. This optimization is primarily time-directed, but also decreases the space required to
represent a Unicon class instance in compiled Unicon targets.

A series of transformations is performed on Unicon source code to produce Icon source that is
translated by the Icon translator Icont, and subsequently executed by the Icon interpreter Iconx. A
sample Unicon program for illustrative purposes appears in an appendix of [Wilder06].

Classes are not native to Icont or Iconx. Instead they are translated into a collection of proce-
dures and records recognized as traditional Icon constructs by Icont and Iconx. Transformations
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record fifo__state(__s,__m,m_data)
record fifo__methods(get,peek,put,size,initially,buf)
global fifo__oprec, buf__oprec
procedure fifo()
local self,clone
initial {

if /fifo__oprec then fifoinitialize()
if /buf__oprec then bufinitialize()
fifo__oprec.buf := buf__oprec
}
self := fifo__state(&null,fifo__oprec)
self.__s := self
self.__m.initially(self,) | fail
return self

end

procedure fifoinitialize()
initial fifo__oprec := fifo__methods(fifo_get,fifo_peek,fifo_put,

fifo_size,fifo_initially)
end

Figure 32.10: Unicon Object as Procedural Entity

pertaining to inheritance, method resolution, etc., are performed on the Unicon source to produce
semantically equivalent procedural code acceptable to Icont.

The current code generation model produces two record declarations to represent each class.
For example, the record fifo__methods contains a field for each member method of a fifo class.
A single instance of a fifo__methods record is created at run-time and shared by all fifo ob-
jects. Each fifo instance refers to this methods vector through the __m field of its corresponding
record fifo__state. One fifo__state record instance is created for each run-time fifo object. The
fifo__state record contains fields for all member variables in a fifo instance, a field for the implicit
self member specific to object-oriented programming languages, and the aforementioned methods
vector __m.

A code snippet from [Wilder06] illustrating the internal representation of a Unicon object in the
procedural realm of Icon appears in Figure 32.10. The procedure fifo represents the constructor of
a fifo object. The first call to this constructor instantiates a fifo__methods record named fifo__oprec
containing all procedures representing the methods contained in the fifo class. The procedure fifo
creates an instance of the fifo__state record, populates the __m and __s fields with the methods
vector and self reference, respectively, and invokes the initially procedure corresponding to the
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struct fentry { /* field table entry */
struct fentry *blink; /* link for bucket chain */
char *name; /* name of field */
struct par_rec *rlist; /* head of list of records */
};

Figure 32.11: Field Representation in Iconc

procedure fifo_initially to initialize the explicit member variables of this fifo instance.
A variable in the Unicon or Icon programming language may assume many types over its life-

time, and variables in these languages need not be declared before their use. This flexibility con-
tributes admirably to the rapid development model for which these languages are renowned, and is
simultaneously a source of consternation when attempting to translate down to a high level language
with a more rigid type system. Iconc employs a type inferencing system based upon global data
flow analysis to determine the types that any variable may take during specific points of program
execution. Empirical data suggests that this type inferencer is highly effective The code generation
model of Unicon uses global variables to represent class-wide data shared among Unicon class
instances.

Records are used to implement abstract data types in Icon, and Unicon classes are themselves
represented as Icon records. Because Unicon is an object-oriented programming language, it pro-
vides mechanisms for the encapsulation of data and operations within an object or l-value, and
permits the access or mutation of objects through field references associated with the object to
be manipulated. The typing system used by the Iconc type inferencer treats records with particular
rigor. Each Icon record is considered a distinct type, and each field within each record is itself a dis-
tinct type. This treatment of records contributes to the thorough analysis of the flow of data among
Icon variables and facilitates the generation of efficient C code to represent Icon expressions.

When a field reference is encountered during the parsing of Icon code, Iconc creates a node in its
internal parse tree corresponding to the field reference. Iconc instantiates a struct fentry of the form
seen in Figure 32.11 for each field encountered. The declaration of a struct fentry reveals that Iconc
associates a list of struct par_rec with each field entry. The struct par_rec list represents all records
containing a field of a given name. The declaration of struct par_rec appears in Figure 32.12.

All struct fentry instances are hashed using the name of the field as the hashing key. The
struct par_rec declaration contains the field offset for the field of a given name within a particular
parent record. When a field reference is encountered in the parse tree during type inferencing,
Iconc infers the types that the record may assume at the location of the field reference during
program execution. Iconc then uses the name of the field to which the code refers to determine
the parent records associated with the field and the offsets of the field within said parent records.
This information is used in the event that a lefthand side of a field reference may assume multiple
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struct par_rec { /* list of parent records for a field name */
struct rentry *rec; /* parent record */
int offset; /* field’s offset within this record */
int mark; /* used during code generation */
struct par_rec *next;
};

Figure 32.12: Parent Record Representation in Iconc

{
/* lkup undo__UndoableEdit */
struct b_record *r_rp = (struct b_record *)

BlkLoc(r_f.t.d[0] /* self */);
r_f.t.d[2].dword = D_Var +

((word *)&r_rp->fields[8] - (word *)r_rp);
VarLoc(r_f.t.d[2]) = (dptr)r_rp;
}

Figure 32.13: Iconc Code Generated for Unambiguous Field Reference

types at a given point in program execution. The information regarding the types that the field may
assume during program execution is stored in a specific area of the parse tree node representing the
field reference.

If the type of a record can be determined unambiguously at compile-time, Iconc generates code
that directly accesses a referenced field in the record. The code that Iconc generates in this case
is of the form seen in Figure 32.13. In this case, the Iconc type inferencer has determined that the
lefthand side of the field reference at this code point can only take one type during program execu-
tion, and Iconc has determined the offset of the field to be accessed by examining the struct par_rec
corresponding to the type of the record.

Often the Iconc type inferencer determines that the lefthand side of a field reference at a given
code point may assume more than one record type during program execution. In this case, Iconc
examines all records associated with the types that the lefthand side may assume and, if only a
single record contains a field of the name specified at that code point or if the field to be referenced
is at the same offset within all records containing the field, Iconc is still able to generate code that
is of the form seen in Figure 32.13.

In many cases, however, more than one record contains a field of the name specified in the field
reference, and the offsets for the named field within one or more of these records is not the same.
In this case, Iconc generates a C switch statement to perform a run-time check to determine the
type of the record being accessed and the offset of the field within that record. The code generated
by Iconc in this instance is of the form shown in Figure 32.14.
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{
/* lkup MaxChars */
struct b_record *r_rp = (struct b_record *)

BlkLoc(glbl_argp[0] /* self */);
dptr r_dp; int fld_idx;
switch (r_rp->recdesc->proc.recnum) {

case 127:
r_dp = &r_rp->fields[4];
break;

case 285:
r_dp = &r_rp->fields[1];
break;

default:
if ((fld_idx = fldlookup(r_rp, "MaxChars")) < 0)

err_msg(207, &glbl_argp[0] /* self */);
else

r_dp = &r_rp->fields[fld_idx];
}

r_f.t.d[11].dword = D_Var + ((word *)r_dp - (word *)r_rp);
VarLoc(r_f.t.d[11]) = (dptr)r_rp;
}

Figure 32.14: Iconc Code Generated for Ambiguous Field Reference
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In this case Iconc generates code to examine the record number of the lefthand side of the
field reference and assigns the correct field offset based upon the number (type) of the record
being accessed. This information is gathered from the struct fentry and struct par_rec lists at
compile-time.

32.7.1.1 The Proposed Optimization

This optimization originated as a time-directed optimization during the experimentation with and
analysis of C code generated for Unicon source. Since Unicon is object-oriented, an obvious path
to faster generated code seemed to be through the tailoring of field references. The reader will
recall that a method reference in Unicon source is actually presented as a pair of field references to
Iconc. The first reference is to obtain the __m field (methods vector) of the object, and the second
is to access the desired field containing the desired method. The primary goal at the outset of this
optimization work was to eliminate this extra field reference in compiled Unicon targets.

The first step toward eliminating the extra field reference for method invocations in compiled
Unicon targets was to modify the Unicon code generation model. Unicon∆ was modified to elim-
inate all references to __m and __s in generated code targeted for Iconc∆. The translation of a
Unicon class into Icon records was modified to facilitate the removal of __m and __s.

Comparing the generated code produced by this optimization with previous generated code
reveals several points of interest worthy of discussion. The record fifo__methods declaration and
its instance global fifo__oprec are the same in both of these appendices. This is due to the fact that
the proposed optimization retains the previous behavior of using a single, shared methods vector
among all instances of a Unicon class. The previous representation of the fifo class from an in
appendix in [Wilder06] as shown below

record fifo__state(__s,__m,m_data)
record fifo__methods(get,peek,put,size,initially,buf)

now appears as

record fifo__mdw_inst_mdw(m_data,get,peek,put,size,initially,buf)
record fifo__methods(get,peek,put,size,initially,buf)

in the code generated by Unicon∆ as modified for this proposed optimization. The reader will
immediately note that the fifo__mdw_inst_mdw declaration, the counterpart to the fifo__state dec-
laration under the previous translation model, has more fields than the previous fifo__state, and that
the record fifo__mdw_inst_mdw declaration contains fields that are redundant with those contained
in the record fifo__methods declaration. This is intended.

The field redundancy between the fifo__methods and fifo__mdw_inst_mdw records under the
proposed optimization is a bit of trickery directed at the Iconc∆ parser. This field redundancy leads
Iconc∆ to permit the notation



494

r.add() invocation P

where

r.__m.add() invocation O

was previously required. When Iconc∆ parses invocation P, it determines that invocation P is syn-
tactically correct due to this intentional field redundancy. After type inferencing is complete,
the redundant fields in the struct rentry of the struct par_rec that Iconc∆ builds to represent the
struct fifo__mdw_inst_mdw are removed. This removal makes these fields and their offsets inacces-
sible to the Iconc∆ code generator. The removal of redundant fields from Iconc records representing
Unicon class instances is accomplished by the source code depicted in Figure 32.15.

All field references are examined during the code generation phase of Iconc∆. If a given field
reference is an invocation and the type of the field is of one or more Unicon class record instances,
control is passed to additional logic added inside Iconc∆ to resolve the particular vector table to
which the reference is directed.

32.7.1.2 Results

The reader will recall that the code to add a datum to a fifo as it appears in the sample program in an
appendix of [Wilder06] is f.put("1st") as shown in the procedure fifo_test. A snippet of code gener-
ated by Iconc to perform the above invocation using the methodology existing prior to this proposed
optimization appears in Figure 32.16. Under this proposed optimization, Iconc∆ generates code to
perform this same invocation as shown in Figure 32.17.

Consideration of Figure 32.16 and Figure 32.17 reveals that an extra field reference is indeed
saved using the proposed optimization. The savings in time realized by this optimization will
be proportional to the number of method invocations executed by a compiled Unicon program.
Another effect of the proposed optimization is the decrease of run-time space required to represent
a Unicon object in code generated by Iconc∆. The space required to represent two descriptors
in compiled Unicon targets is eliminated for each run-time instance of a Unicon class under the
proposed optimization because the fields __m and __s are no longer used. Measurements verifying
the space savings introduced by this optimization are described in Section 32.8.4. This side effect
will likely prove beneficial in large-scale, object-oriented applications where Unicon is typically
deployed.

32.7.2 Invocations

This section describes a proposed Uniconc optimization that modifies numeric parameters passed
to invocations in compiled Unicon and Icon targets. This optimization is primarily time-directed.
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static
void
adjust_class_recs(recs)

struct rentry * recs;
{

int nflds;
char * p, * q;
struct fldname * f;
struct rentry * rinst;
struct rentry * rmeth;

for (rinst=recs; rinst; rinst=rinst->next) {
if ((p = strstr(rinst->name, "__mdw_inst_mdw")) == NULL)

continue;
for (rmeth=rinst->next; rmeth; rmeth=rmeth->next) {

if ((q = strstr(rmeth->name, "__methods")) == NULL)
continue;

if (p - rinst->name != q - rmeth->name)
continue;

if (strncmp(rinst->name, rmeth->name, p - rinst->name))
continue;

nflds = rinst->nfields - rmeth->nfields;
while (rinst->nfields > nflds) {

f = rinst->fields;
rinst->fields = rinst->fields->next;
free(f);
rinst->nfields–;
}

break;
}

}
}

Figure 32.15: Record Field Removal in Iconc∆
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L30: ; /* is record */
{
struct b_record *r_rp = (struct b_record *)

BlkLoc(r_f.t.d[0]/* f */);
/* mdw: collapsed __m switch */
r_f.t.d[3].dword = D_Var +

((word *)&r_rp->fields[1] - (word *)r_rp);
VarLoc(r_f.t.d[3]) = (dptr)r_rp;
}
deref(&r_f.t.d[3], &r_f.t.d[3]);
if ((r_f.t.d[3]).dword == D_Record)

goto L31 /* is record */;
err_msg(107, &r_f.t.d[3]);

L31: ; /* is record */
{
struct b_record *r_rp = (struct b_record *) BlkLoc(r_f.t.d[3]);
dptr r_dp; int fld_idx;
switch (r_rp->recdesc->proc.recnum) {

case 1:
case 3:
case 5:

r_dp = &r_rp->fields[2];
break;

default:
if ((fld_idx = fldlookup(r_rp, "put")) < 0)

err_msg(207, &r_f.t.d[3]);
else

r_dp = &r_rp->fields[fld_idx];
}

r_f.t.d[2].dword = D_Var + ((word *)r_dp - (word *)r_rp);
VarLoc(r_f.t.d[2]) = (dptr)r_rp;
}
r_f.t.d[3].dword = D_Var;
r_f.t.d[3].vword.descptr = &r_f.t.d[0] /* f */;
r_f.t.d[4].vword.sptr = "1st";
r_f.t.d[4].dword = 3;
invoke(3, &r_f.t.d[2], &r_f.t.d[5], sig_28);

L29: ; /* bound */

Figure 32.16: Sample Method Invocation in Iconc
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L12: ; /* is record */
{
/* mi: lkup put in fifo__oprec */
struct b_record *r_rp = (struct b_record *)

BlkLoc(globals[17]);
r_f.t.d[2].dword = D_Var +

((word *)&r_rp->fields[2] - (word *)r_rp);
VarLoc(r_f.t.d[2]) = (dptr)r_rp;
}
r_f.t.d[3].dword = D_Var;
r_f.t.d[3].vword.descptr = &r_f.t.d[0] /* f */;
r_f.t.d[4].vword.sptr = "1st";
r_f.t.d[4].dword = 3;
invoke(3, &r_f.t.d[2], &r_f.t.d[5], sig_13);

Figure 32.17: Sample Method Invocation in Iconc∆

32.7.2.1 Background

The RTL∆ contains a generalized invocation function called invoke. Code generated by Iconc and
Iconc∆ calls invoke in order to accomplish the invocation of a procedure or function represented by
a procedure descriptor or a string descriptor. The signature of invoke appears in the RTL∆ as shown
in Figure 32.18. The dptr type shown in Figure 32.18 is a pointer to a descriptor. Descriptors are
used in the RTL∆ and the Icon VM to generically describe the type and value of Icon and Unicon
run-time entities. A typical invocation of invoke before the proposed optimization is shown in
Figure 32.19.

32.7.2.2 The Proposed Optimization

This optimization adds logic to Iconc∆ in order to determine at compile-time the value held by
the integer descriptor that is declared as the formal argument nargs for each invocation of the
invoke function. This optimization is enabled whenever using Uniconc to produce a compiled
target. The logic added to Iconc∆ by this optimization creates a temporary compile-time descriptor
which is marked to be accessed as an integer literal containing the value of the integer descriptor
that would normally be used to accomplish the invocation. This temporary descriptor is used by
the Iconc∆ code generator to populate the codestream with the integer literal itself rather than the
sequence of field references that are normally used to access the integer literal within the given
descriptor. Figure 32.20 depicts the result of this proposed optimization. The invoke function being
used to accomplish the invocation of an Icon procedure in a compiled target shown at the end of
Figure 32.20 reveals that the logic added to Iconc∆ by this proposed optimization indeed inserts an



498

int invoke(nargs, args, rslt, succ_cont)
int nargs;
dptr args;
dptr rslt;
continuation succ_cont;

Figure 32.18: Signature of invoke Function

r_f.t.d[6].dword = D_Integer;
r_f.t.d[6].vword.integr = 3;
r_f.t.d[3].dword = D_Var;
r_f.t.d[3].vword.descptr = &r_f.t.d[0] /* f */;
r_f.t.d[4].vword.sptr = "1st";
r_f.t.d[4].dword = 3;
invoke(r_f.t.d[6].vword.integr, &r_f.t.d[2], &r_f.t.d[5],

sig_28);
L29: ; /* bound */

Figure 32.19: Sample Invocation in Uniconc Before Optimization

integer literal in the codestream where previously there were a sequence of field references. The
logic added to Iconc∆ that accomplishes this substitution is shown in Figure 32.21.

32.7.2.3 Results

Consideration of Figure 32.19 and Figure 32.20 indicates that eleven field references, three array
subscript operations, and two assignment operations are eliminated at run-time for each invocation
of invoke acted upon by this proposed optimization. This proposed optimization only acts upon
those invocations that are not already correctly inlined by Iconc, so the aforementioned benefit is
realized if and only if the previously existing Iconc code failed to reduce the descriptor to an integer
literal.

r_f.t.d[3].dword = D_Var;
r_f.t.d[3].vword.descptr = &r_f.t.d[0] /* f */;
r_f.t.d[4].vword.sptr = "1st";
r_f.t.d[4].dword = 3;
invoke(3, &r_f.t.d[2], &r_f.t.d[5], sig_28);

L29: ; /* bound */

Figure 32.20: Sample Invocation in Uniconc After Optimization
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static
void
sub_ilc_fncall_explicit_arg(argilc, protoilc, cd, indx)

struct il_c * argilc;
struct il_c * protoilc;
struct code * cd;
int indx;

{
int loctype;

for (; argilc && protoilc; argilc=argilc->next,
protoilc=protoilc->next) {
if (argilc->il_c_type != ILC_Ref) {

/* process nonmodifying arg references only */
sub_ilc(argilc, cd, indx);
continue;

}
loctype = cur_symtab[argilc->n].loc->loc_type;
if (loctype != V_Temp && loctype != V_NamedVar) {

/* process args for temp locs only */
sub_ilc(argilc, cd, indx);
continue;

}
if (protoilc->s == NULL ||

strncmp("C_integer", protoilc->s, 9)) {
/* currently process only C_integer type */
sub_ilc(argilc, cd, indx);
continue;

}
cd->ElemTyp(indx) = A_ValLoc;
cd->ValLoc(indx) = loc_cpy(cur_symtab[argilc->n].loc,

M_CInt);
}

}

Figure 32.21: Inlining Integer Arguments in Iconc∆
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32.7.3 Dereferences

This section describes a proposed Uniconc optimization that generates in-line C code in certain
cases where a call to the deref RTL∆ function would normally be generated in compiled Unicon
and Icon targets. This optimization is primarily time-directed.

32.7.3.1 Background

Variables in Icon and Unicon may assume many types during the lifetime of a program. The
implementors of the Icon interpreter use the notion of a descriptor to generically describe the type
and value of a given Icon variable. This method of description is also used in the Icon run-time
library, and was subsequently adopted by Iconc. The declaration of a descriptor is shown in Section
4.4.1. Performance analysis of compiled targets using profiling tools indicates that the typical Icon
or Unicon program spends an appreciable amount of time dereferencing descriptors in the RTL∆

deref function.

32.7.3.2 The Proposed Optimization

When the types of the operands to the deref operation can be reliably determined at compile-time,
there are situations where the functionality provided by the deref function can be generated directly
in the codestream without entering the RTL∆. In the event that the entity being dereferenced is not
a variable, or is a “normal” variable, the code contained in the deref function is simple and should
provide an opportunity for inlining.

Iconc has been modified to examine the operands of the deref operation and to generate the
inline equivalent of a deref call where appropriate. This optimization is enabled by the -wb Uniconc
command-line option. This optimization is intended to act only in the case where the dereferenced
entity is a “simple” variable, or is not a variable at all.

32.7.3.3 Results

A snippet of code generated by Iconc∆ without the proposed optimization is shown in Figure 32.22.
In this snippet, the result of O114_subsc is used as both the source and destination of a dereferenc-
ing operation via the RTL∆ deref function.

A snippet of code generated by Iconc∆ for the same source with the proposed optimization
enabled is shown in Figure 32.23. The call to deref in Figure 32.22 has been replaced with the
inlined equivalent of a deref call in Figure 32.23. It should be noted that VarLoc and Offset are
macros in the generated code, so no function call is being made by the inlined substitute for the call
to the deref function in the RTL∆.

It is likely that the methodology employed by this particular optimization to circumvent a call
to an RTL∆ operation can be applied to other RTL∆ operations in a similar fashion. Applying this
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deref(&r_f.t.d[5], &r_f.t.d[5]);

Figure 32.22: Code Generated Before deref Optimization

r_f.t.d[5] = *(dptr)((word *)VarLoc(r_f.t.d[5]) +
Offset(r_f.t.d[5]));

Figure 32.23: Code Generated After deref Optimization

methodology to other RTL∆ functions is a potential subject of future experimentation.

32.8 Metrics

Uniconc can produce compiled or interpreted Icon and Unicon targets. The purpose of this chapter
is to quantify the speedup provided by Uniconc to compiled versus interpreted Unicon code. This
speedup is compared to the speedup provided by Uniconc to compiled versus interpreted Icon code.
Iconc∆ was used for the tests instead of Iconc, initially for the sake of convenience in testing. Sub-
sequent attempts to run the Icon test cases with Iconc from the Icon 9.4.3 distribution failed due to
incompatibilities between Iconc and the Icon 9.4.3 run-time system. These incompatibilities likely
exist because Iconc is no longer actively supported. The results from Iconc∆ for Icon programs
depicted in this chapter should be comparable to results obtained from Iconc for these same Icon
programs, although the targets generated by Iconc∆ will likely be a few percent faster due to the
benefits of the dereference inlining optimization described in Section 32.7.3.

32.8.1 Overview

A representative set of programs were chosen to catalogue the important functional features of Icon
and Unicon while providing a comparative analysis of these features. The set of programs contained
herein is by no means exhaustive. The execution speed of some programs are measured with the
linux time(1) utility, and others are measured using the Icon &time keyword. The latter method of
measuring execution speed was borrowed from [Walker91]. All measurements were taken on an
AMD64 dual-core dual-processor machine running linux (Fedora Core 3). Each processor has a
clock speed of 1790.9 MHz and contains 1MB cache.

32.8.2 Invocations

Invocations are a cornerstone of any programming language. Difficulties arise when attempting to
compare invocations in procedural languages to invocations in object-oriented languages due to the
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fact that invocations in object-oriented languages are fundamentally different than invocations in
procedural languages.

Figure 32.24 is an Icon program used to measure the speed of invocations in compiled and
interpreted Icon targets. Figure 32.25 contains a Unicon program used to measure the speed of
invocations in compiled and interpreted Unicon targets. All targets, compiled and interpreted,
were generated by the same version of Uniconc. Each target was invoked with a single command-
line argument in order to accomplish 10,000,000 invocations. The measurements depicted are the
average of three runs of each program. The results are shown below.

Target average time (ms)
compiled Icon 703
interpreted Icon 8,560

Icon speedup 1,217%
compiled Unicon 1,190
interpreted Unicon 10,150

Unicon speedup 853%

Figure 32.26 is an Icon program using the Takeuchi function to measure the speed of recursive
invocations in compiled and interpreted Icon targets. Figure 32.27 contains a Unicon program us-
ing the Takeuchi function to measure the speed of recursive invocations in compiled and interpreted
Unicon targets. All targets, compiled and interpreted, were generated by the same version of Uni-
conc. Each target was invoked with a single command-line argument of the form tak 27 18 9. The
measurements depicted are the average of three runs of each program taken with the linux time(1)
utility. The results are shown below.

Target average time (ms)
compiled Icon 500
interpreted Icon 11,400

Icon speedup 2,280%
compiled Unicon 2,070
interpreted Unicon 13,600

Unicon speedup 657%

It is apparent that the speedup afforded compiled Unicon invocations by Uniconc is not on par
with the speedup afforded compiled Icon invocations by Uniconc. The results are not discouraging,
but certainly indicate that further research in this area is necessary.
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32.8.3 Field References

Field references are a mainstay of object-oriented programs. The speed at which a field reference is
accomplished is of paramount concern when evaluating the utility of an object-oriented language.

Figure 32.28 is an Icon program used to measure the speed of field references in compiled and
interpreted Icon targets. Figure 32.29 contains a Unicon program used to measure the speed of field
references in compiled and interpreted Unicon targets. All targets, compiled and interpreted, were
generated by the same version of Uniconc. Each target was invoked with a single command-line
argument in order to accomplish 10,000,000 field references. The measurements depicted are the
average of three runs of each program. The results are shown below.

Target average time (ms)
compiled Icon 760
interpreted Icon 8,500

Icon speedup 1118%
compiled Unicon 760
interpreted Unicon 8,610

Unicon speedup 1133%

The results indicate that the speedup afforded compiled Unicon field references by Uniconc is
similar to the speedup afforded compiled Icon field references by Uniconc.

32.8.4 Space Savings In Compiled Targets

Section 32.7.1 describes an optimization for compiled targets that reduces the size of class instances
in compiled Unicon targets. This section verifies the space savings offered by the aforementioned
optimization.

A sample Unicon program that measures the size of the string and block regions used by the
program appears in Figure 32.30. The memlog procedure used in this program is the work of
Gregg M. Townsend of the University of Arizona. This program merely instantiates a specified
number of instances of the fivemembers class, and invokes memlog to emit the usage of the string
and block regions by the program as it progresses. The STRSIZE and BLKSIZE environment
variables were set to a very large value while running the program to ensure that no collections
occurred. The invocation of memlog could and probably should be moved to the very end of the
main procedure, but it was left inside the instantiation loop to permit measurements using this
program when collections are permitted to occur.

When this program was run with command-line arguments necessary to create 500 instances of
the fivemembers class, the following results were observed:
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Target usage of regions (bytes)
compiled Unicon str:0/36277125(0) blk:56160/36277125(0)
interpreted Unicon str:3/36277125(0) blk:72160/36277125(0)

block region savings 16,000 bytes

This result is consistent with the expectation that the space of two Unicon descriptors is saved per
class instance under the optimization proposed in Section 32.7.1. The program was also run with
command-line arguments necessary to create 1,000 instances of the fivemembers class, with the
following results:

Target usage of regions (bytes)
compiled Unicon str:0/36277125(0) blk:112160/36277125(0)
interpreted Unicon str:4/36277125(0) blk:144160/36277125(0)

block region savings 32,000 bytes

This result is also consistent with the expectation that the space of two Unicon descriptors is saved
per class instance under the optimization proposed in Section 32.7.1.

These measurements only verified that the space of two descriptors per class instance is saved
by the optimization proposed in Section 32.7.1. The impact of this savings realized will vary
depending upon the nature of the application being compiled by Uniconc. It is vacuously true that
an increasing number of object instances will result in a higher savings of space.

32.8.5 General Programs

The quicksort algorithm was selected as a benchmark primarily because of its ubiquity. It is also
recursive, and sorts in place so the number of allocations is likely reduced. Figure 32.31 shows the
Icon implementation of quicksort used for this measurement, and Figure 32.32 shows the Unicon
implementation of quicksort used. All targets, compiled and interpreted, were generated by the
same version of Uniconc. Each target was invoked with a single command-line argument in order
to accomplish the sorting of 200,000 pseudorandom values. The measurements depicted are the
average of three runs of each program taken with the linux time(1) utility. The results are shown
below.
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Target average time (ms)
compiled Icon 1,090
interpreted Icon 4,790

Icon speedup 440%
compiled Unicon 1,260
interpreted Unicon 6,090

Unicon speedup 483%

The seed used by the pseudorandom number generation facility in Icon and Unicon is the same
for each program, and the values being sorted by the programs are therefore the same. The results
indicate that the speedup afforded compiled Unicon by Uniconc for such a sorting program is
comparable to the speedup afforded compiled Icon by Uniconc.

A pair of appendices in [Wilder06] contain the listing for an I/O-intensive Unicon program that
creates an arbitrary number of Unix resource files containing an arbitrary number of topics in each
file, followed by the listing for the Icon counterpart to the aforementioned Unicon program. All
targets, compiled and interpreted, were generated by the same version of Uniconc. Each target was
invoked with command-line arguments to accomplish the creation of 50 resource files, with each
file containing 500 topics. The filesystem was cleared of resource files created for a given program
run after each run was measured. A new class instance (in Unicon) or record instance (in Icon) is
created for each resource file. The measurements depicted are the average of three runs of each
program taken with the linux time(1) utility. The results are shown below.

Target average time (ms)
compiled Icon 1,030
interpreted Icon 4,960

Icon speedup 481%
compiled Unicon 1,080
interpreted Unicon 5,060

Unicon speedup 468%

This particular set of measurements is not very interesting since the results are bounded by I/O.
The results do indicate, however, that Uniconc performs comparably for compiled Icon and Unicon
targets that are bound by I/O.

The measurements contained in this section were taken with all optimizations enabled in
Iconc∆. It should be noted that Iconc∆ has been produced from modifications to Iconc, so the
results obtained on Icon programs with an unmodified Iconc will likely be different than those
observed herein. The full effect of the class instance representation optimization described in Sec-
tion 32.7.1 was not measured in this section because no appropriate basis point for such a measure-
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ment exists. In a general sense, the measurements in this section indicate that the speedup provided
by Uniconc for compiled Unicon targets is about the same as the speedup provided by Uniconc for
compiled Icon targets.

procedure p()
return;

end

procedure main(argv)
local n, clk;

n := integer(argv[1]);
clk := &time;
while (n > 0) do {

p();
n -:= 1;
}

clk := &time - clk;
write("time: ", clk);

end

Figure 32.24: Icon Program Measuring Invocations

32.9 Future Work

Uniconc is an experiment in progress. Limitations exist in the version of Uniconc described in
this chapter. There are also potential improvements that can be made to Uniconc in addition to
addressing its limitations. This chapter discusses the limitations of the current version of Uni-
conc, describes some of the approaches that are being considered to eliminate or alleviate these
limitations, and describes potential improvements in generated targets.

32.9.1 Limitations

The version of Uniconc described in this chapter contains limitations pertaining to scalability, dis-
ambiguation, and introspection. Each of these limitations are characterized in this section, and the
current approaches being considered to address each of these limitations are described.
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class o()
method p()

return;
end

end

procedure main(argv)
local n, x, clk;

x := o();
n := integer(argv[1]);
clk := &time;
while (n > 0) do {

x.p();
n -:= 1;
}

clk := &time - clk;
write("time: ", clk);

end

Figure 32.25: Unicon Program Measuring Invocations

32.9.1.1 Scalability

Uniconc currently has a scalability issue that prevents the compilation of large, class-intensive
programs with computational resources available to the typical user. Sources of this scalability
issue are:
• The parse tree for an entire program is maintained in memory by Iconc∆ for the duration of

compilation. This includes nodes corresponding to unreachable control paths in source programs.
• The representation of type vectors used by Iconc∆ grows very large when many distinct types

are used within a program. This is particularly evident in Unicon programs where many classes
(records) are used.
• The representation of type vectors used by Iconc∆ can become pathologically sparse when

many distinct types are used within a program. This is particularly evident in Unicon programs
containing many classes.

Experiments to improve the scalability of Uniconc during the course of this project have thus far
proven unsuccessful. The preliminary underpinnings of further Uniconc scalability experiments are
currently being planned. Three avenues of approach to this problem are currently being entertained.
These approaches are:
Approaches i and ii above will unfortunately only provide a transient alleviation of the symptoms



508

procedure tak(x, y, z)
if not (y < x) then

return z
else

return tak(tak(x-1, y, z), tak(y-1, z, x), tak(z-1, x, y));
end

procedure main(argv)
tak(integer(argv[1]), integer(argv[2]), integer(argv[3]));

end

Figure 32.26: Icon Takeuchi Function

that characterize the Uniconc scalability problem. It is likely that one or more of these approaches
will be attempted, however, in order to permit the compilation of larger Unicon programs with
typically available computational resources in the near term.

Approach iii is currently the only path that may provide a solution to the Uniconc scalability
problem. It is unknown, however, whether this approach is navigable. Multiple gedankenexperi-
ments have to this date been conducted using approach iii, and the feasibility of the approach is
still in doubt. It is possible that separately compiled modules in Uniconc can be modelled after the
approach currently taken with builtin functions in the RTL∆. This approach might also use the type
coercion syntax currently found in the RTL∆ implementation language to improve the quality of
the code generated for Unicon modules. It would be far more desirable, however, to devise a tech-
nique that supports the separate compilation of Unicon modules without marring the syntactic or
semantic elegance of Unicon. The Uniconc scalability issue will be a primary focus of continuing
research.

32.9.1.2 Lack of Introspection

The Unicon GUI class library uses facilities that examine the members of Unicon class instances at
run-time. This introspective capability is very important for large-scale, dynamic, object-oriented
programs. Uniconc is not currently able to correctly compile the Unicon GUI class library because
the introspective capabilities used in this library are highly dependent upon the internal represen-
tation of Unicon classes. The representation of Unicon class instances has been fundamentally
modified by Uniconc as described in Section 32.7.1 in order to produce savings in space and time.
Unfortunately, the modifications directly conflict with the current introspective capabilities of the
Unicon GUI class library. If the optimization proposed in Section 32.7.1 is adopted, the intro-
spective capabilities in the Unicon GUI class library will need to be modified to accommodate this
change. It is likely that a new function called methodnames could be added to the Uniconc RTL∆

in order to satisfy the inherently dynamic requirements of introspection while insulating the Unicon
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class tak()
method comp(x, y, z)

if not (y < x) then
return z

else
return comp(comp(x-1, y, z), comp(y-1, z, x),

comp(z-1, x, y));
end

initially(x, y, z)
comp(x, y, z);
return;

end

procedure main(argv)
local t;
t := tak(integer(argv[1]), integer(argv[2]), integer(argv[3]));

end

Figure 32.27: Unicon Takeuchi Function

GUI class library from a priori knowledge regarding the peculiarities of the internal representation
of Unicon classes. In the event that the introspective behavior of compiled Unicon applications
can be unambiguously determined by Uniconc at compile-time, the functionality provided by a
run-time call to methodnames can be inlined by Iconc∆.

32.9.1.3 Disambiguation

The Iconc∆ code generator currently does not correctly differentiate between methods and proce-
dures in the case where the member variable of a class instance is reassigned with a procedure.
Figure 32.33 depicts a situation where the Iconc∆ code generator currently fails. In particular, the
code generated for the invocation of the member variable x in class f00 shown in Figure 32.33 will
be invalid. This is because the lefthand side of the generated self.x() invocation is a class instance,
so an implicit self argument will be added to the invocation by the Iconc∆ code generator. A po-
tential avenue of approaching the solution to this error has been devised, but the experimentation
required to achieve a solution has not yet been performed.

The disambiguation methodology currently employed by Iconc∆ contains a flaw that permits
the crafting of adversarial Unicon programs that will defeat said disambiguation. A method for
identifying these adversarial situations in Unicon programs has been devised, and a scheme for gen-
erating code to defer disambiguation until run-time in these instances will likely be implemented
to plug this hole in the near term. Research is currently being undertaken to refine the disam-
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record rec(x)

procedure main(argv)
local n, r, clk;

n := integer(argv[1]);
r := rec(11);
clk := &time;
while (n > 0) do {

v := r.x;
n -:= 1;
}

clk := &time - clk;
write("time: ", clk);

end

Figure 32.28: Icon Program Measuring Field References

biguation methodology used by Iconc∆ in order to decrease the likelihood of requiring run-time
disambiguation in adversarial Unicon programs.

32.9.2 Potential Improvements

Uniconc provides a space savings of two descriptors per class instance in compiled versus VM-
hosted Unicon targets. Greater savings in space for compiled Unicon programs may be possible by
extending the class instance representation optimization described in Section 32.7.1.

A speedup of compiled Unicon targets may be possible by reordering the fields of a class in-
stance presented to Iconc∆ in such a manner that methods vectors inherited from the superclasses of
a given class are ultimately placed in the lower-ordered fields of the struct rentry created by Iconc∆.
This would increase the likelihood that superclass methods vectors shared by class instances would
occupy the same slot indices, thereby permitting the generation of faster code for run-time accesses
to said fields.

The speedup provided by Uniconc for compiled targets can potentially be improved by extend-
ing the Iconc∆ code generator to eliminate the use of descriptors in generated code where possible.
The quality of information provided by the Iconc∆ type inferencer is a primary enabler of this
possibility.

Iconc was originally designed to manipulate user programs directly. Uniconc uses Iconc∆ to
manipulate code generated by Unicon∆; a very different role. It is likely that the set of potential
expressive inputs to Iconc∆ can be reduced by Unicon∆, thereby providing a smaller mapping
domain for code transformations performed in Iconc∆. A smaller mapping domain in Iconc∆ may
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class o(m_x)
method run(n)

local v, clk;
clk := &time;
while (n > 0) do {

v := self.m_x;
n -:= 1;
}

clk := &time - clk;
write("time: ", clk);

end
initially(n)

run(n);
end

procedure main(argv)
local n, r;

n := integer(argv[1]);
r := o(n);

end

Figure 32.29: Unicon Program Measuring Field References

illuminate further opportunities for optimizing the C source generated by Iconc∆.

32.10 Conclusion

Uniconc is a useful tool for conducting code transformation experiments. The visibility into code
transformation experiments imparted by the topology of Uniconc should prove beneficial for ex-
ploring the optimizational peculiarities of goal-directed and goal-directed, object-oriented pro-
gramming languages.

Preliminary results suggest that compiled targets generated by Uniconc are generally at least
400% faster than VM-hosted targets generated by Uniconc. In some cases the improvement in
speed appears much larger. This speedup is the direct result of attempting to lower user programs
toward the target machine. The speedups observed were not obtained at the expense of program
readability or flexibility; the “orthogonality to the mainstream” [Griswold78] mantra has thus far
been preserved.

The speedup provided by Uniconc for compiled Unicon targets is about the same as the speedup
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provided by Uniconc for compiled Icon targets. Several optimizations were implemented, primarily
to reduce the time and space overhead associated with object-oriented code. Further research is
necessary in the area of speedup improvement for invocations in compiled Unicon targets.
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class fivemembers(v, w, x, y, z)
initially(n)

x := \n;
end

procedure memlog(f)
local sused, bused, salloc, balloc, scoll, bcoll
every sused := &storage \ 2
every bused := &storage \ 3
every salloc := &regions \ 2
every balloc := &regions \ 3
every scoll := &collections \ 3
every bcoll := &collections \ 4
write(f, "str:", sused, "/", salloc, "(", scoll, ") ",

"blk:", bused, "/", balloc, "(", bcoll, ") ")
return sused + bused

end

procedure main(argv)
local i, x;

i := (integer(\argv[1]) | 500);
while (i > 0) do {

i -:= 1;
x := fivemembers();
memlog();
}

end

Figure 32.30: Unicon Program Measuring Class Instance Space Usage
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procedure partition(a, p, r)
local x, i, j;

x := a[r];
i := p - 1;
every j := p to r-1 do {

if (a[j] <= x) then {
i +:= 1;
a[i] :=: a[j];
}

}
a[i+1] :=: a[r];
return i+1;

end

procedure quicksort(a, p, r)
if (p < r) then {

q := partition(a, p, r);
quicksort(a, p, q-1);
quicksort(a, q+1, r);
}

end

procedure main(args)
local a, i, n;

a := list();
n := (integer(\args[1]) | 32768);
every i := 1 to n do

put(a, ?1048576);
quicksort(a, 1, *a);

end

Figure 32.31: Icon Quicksort Program
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class sorter(m_a)
method partition(p, r)

x := m_a[r];
i := p - 1;
every j := p to r-1 do {

if (m_a[j] <= x) then {
i +:= 1;
m_a[i] :=: m_a[j];
}

}
m_a[i+1] :=: m_a[r];
return i+1;

end
method quicksort(p, r)

if (p < r) then {
q := partition(p, r);
quicksort(p, q-1);
quicksort(q+1, r);
}

return;
end

initially(n)
m_a := list();
/n := 32768;
every i := 1 to n do

put(m_a, ?1048576);
quicksort(1, *m_a);
return;

end

procedure main(args)
local inst;
inst := sorter(args[1]);

end

Figure 32.32: Unicon Quicksort Program
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(i) Pruning the parse tree of unreferenced code prior to performing
type inferencing in Iconc∆.

(ii) Exploiting the redundancy of type vector representation in Iconc∆

by caching common type forms and requiring copy-on-write references to
these forms where possible.

(iii) Permit the separate compilation of Unicon and Icon modules by
devising an efficient scheme for incremental type inferencing.

class f00(x)
method reassign_member_var(p)

x := p;
x();

end
end

Figure 32.33: Unicon Member Variable Reassignment



Chapter 33

Concurrency and Thread-Safety

A thread is a fundamental building block of an executing program, consisting of a set of registers
(including a program counter indicating what instruction it is executing) and a stack with which
to evaluate intermediate results, place parameters and perform function calls, etc. If you have a
running program, you have one thread; if you have multiple threads, you might have one running
at a time and the threads taking turns, or you might have more than one running simultaneously, a
condition known as concurrent execution.

Icon’s co-expression type is a thread-type that does not allow concurrent execution. In fact, the
current implementation of Icon uses posix threads with simple rules to ensure that only one of them
at a time can ever execute.

Since the turn of the 21st century, however, concurrency has become essential to utilizing mod-
ern computer processors. Once CPU manufacturers hit physical limits and could no longer double
the clock speed every 18 months, they have turned a large part of their attention to the addition of
more and more execution cores at a given clock speed. Because multiple cores are now ubiquitous,
and concurrent programming is notoriously difficult, the pressure on very-high level languages to
support concurrency is high, but adding concurrency to a very high-level language is more difficult
than it might seem. Most popular mainstream scripting languages offer pseudo-concurrency, but
true concurrency is often limited by a “global interpreter lock”, or GIL, that prevents simultaneous
access by multiple threads to the same virtual machine.

In order to provide true concurrency, Unicon extends Icon’s posix threads co-expression imple-
mentation, and provides a thread-safe runtime system. Some of this was accomplished by switching
out unsafe C library functions for their thread-safe counterparts, but a far more substantial part of it
was accomplished by making threads as independent of each other as possible, giving each thread
its own copy of various interpreter state variables that formerly were globals. This is one of the few
semantic differences between Icon and Unicon.

517
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33.1 Thread State

Unicon’s threads implementation was influenced heavily by the earlier development of dynamic
loading and the ability to execute multiple programs as co-expressions within the same virtual
machine. That earlier implementation produced a notion of a “current program state” embodied
by a struct progstate. Concurrent threads share parts of what was the progstate, while giving each
thread its own copy of as many parts as possible in order to minimize threads’ interference with
each other. Those parts of the global state that are replicated on a per-thread basis form struct
threadstate in src/h/rstructs.h.

From a language design standpoint, adding concurrency to Unicon consisted of:

1. adding a way to tell co-expressions to execute concurrently instead of waiting to be activated.

2. extending the activation operator @ and adding new operators to provide a simple mecha-
nism for thread synchronization and communication. These were achieved by introducing
a new reserved word thread and extending the @ operator to maintain producer-consumer
queues for asynchronous operation in addition to operators for new forms of synchronization
and communication as discussed later in this section. The thread syntax can be used in the
following manner:

thread expr

The language was also extended with several new built-in functions for high-level access to mu-
tual exclusion primitives and condition variables, in addition to extending a few existing functions
to support new semantics. For example, the built-in function wait() was extended to allow a thread
argument to support the semantics of join in thread programming. Many of the extensions have to
do with synchronization. Some problems require using advanced synchronization mechanisms and
rely on the language support to achieve full control over the execution of threads and protect shared
data. This section covers the synchronization techniques introduced into the Unicon language. It
also covers thread communication and the new communication operators.

33.2 Synchronization

33.2.1 Critical Regions and Mutexes

A mutex is a synchronization object used to protect shared data and serialize threads in critical
regions. For example when two threads compete to increment a variable, the end result might not
be what the programmer intended. In such cases a mutex should be used to protect access to the
variable. Any operation or data where more than one thread can execute non-deterministically,
leading to data corruption or incorrect results is called thread unsafe. Thread unsafe code or data
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structures have to be handled correctly via synchronization mechanisms to achieve correct behavior
with correct results. A mutex object can be created using the mutex() function. The returned mutex
object can then be locked/unlocked via the functions lock() and unlock() to serialize execution in
a critical region. Unicon provides a special syntax for critical regions which is equivalent to a
lock()/unlock() pair, that aims mainly to guarantee that a mutex is released at the end of a critical
region, beside enhancing the readability of the program. Here is the syntax:

critical mtx: expr

This is equivalent to:

lock(mtx)
expr
unlock(mtx)

Mutexes do not exist solely as independent objects, they are also used as attributes of other
objects, namely attributes of the mutable data types. Any data structure in Unicon that can be
used in a thread unsafe manner is better protected by a mutex. Instead of declaring a separate
mutex, locking and unlocking it, the structure can just be marked as needs a mutex/protection and
the language does an implicit locking/unlocking, protecting the operations that might affect the
integrity of the data structure. For example, if several threads are pushing and popping elements
into and out of a list, this creates thread-unsafe operations on the list that require protection. Using a
thread-safe list results in less lines of code compared with doing explicit locking, and also produces
a more efficient program doing less locking and unlocking at the language level, or even not doing
at all. For example, a list can be protected by passing it to the function mutex() as follows:

mutex(L)

From this point on, any puts to the list or gets from L are protected by an implicit mutex locking
mechanism. This helps make concurrent programming almost as easy as writing a sequential pro-
gram. The only needed step is to notify the language at the beginning that the data structure is
shared, by passing it to the mutex() function. Having to explicitly mark structures as shared ensures
that mutexes are only used where needed, and not wasting time on unnecessary locking/unlocking
for structures that are not shared. The locking/unlocking of protected structures slows down struc-
tures operations by about 7%. The mutex() function takes a second optional parameter denoting an
existing mutex object or an object that is already marked as shared (has a mutex attribute) . Instead
of creating a new mutex object for the data structure, the existing mutex is used as an attribute for
the data structure. If the second object is a structure that is not marked as shared, a new mutex is
created. This is useful when two objects need to be protected by the same mutex. For example, the
list L and the table T in the following example share the same mutex:
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mtx := mutex()
L := mutex([ ], mtx)
T := mutex(table(), mtx)

which is equivalent to the following if the mutex does not need to be explicit:

L := mutex([ ])
T := mutex(table(0), L)

or
L := [ ]
T := mutex(table(0), L)

In all cases, lock(L) and lock(T) lock the same mutex, serializing execution on both data struc-
tures. Not all operations on data structures produce correct results, only atomic operations do. In
other words, implicit locking/unlocking takes place per operation, which means even if each one
of the two operations is safe, the combination might not be. A critical region is still needed to
combine the two. For example, if L[1] has the value of 3 and two threads are trying to increment
L[1] as the following:

L[1] := L[1] + 1

the result in L[1] could be 4 or 5. That is because reading L[1] (the right side of the assignment) and
storing the result back in L[1] are two different operations (not atomic) and are actually separated
in time. The good news is that solving such an issue does not require an extra explicit mutex. If L
is marked as shared (passed to the mutex() function ) it can be passed to lock()/unlock() functions.
It can be used with the critical syntax like the following:

critical L: L[1] := L[1] + 1

33.2.2 Initial clause

A procedure in a Unicon (or Icon) program can have an initialization clause at the top of the
procedure. This gets executed only once the first time the procedure is entered. The initial clause
provides a very convenient way to have local static variables and their initialization in the same
procedure instead of relying on global variables and having to initialize them somewhere else. An
Icon procedure that produces a sequence of numbers one at each call can be written as:
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procedure seq()
static i
initial i:=0
i := i+1
return i

end

In Unicon the initial clause must be thread-safe. It can be thought of as a built-in critical region
that is run only once. No thread is allowed to enter the procedure if there is a thread currently
still executing in the initial block. This can be useful specifically in a concurrent environment to do
critical initialization such as creating a new mutex object instead of declaring a mutex variable to
be global and initializing it somewhere else or passing it from one function to another where it will
be actually used. The procedure above is correct for Icon but in a concurrent Unicon program it is
not thread-safe, even with the initial clause. A correct concurrent version of seq() would look like
this:

procedure seq()
local n
static i, region
initial {i:=0; region:=mutex()}
critical region: n := i := i+1
return n

end

Note the use of the local variable n to temporarily hold the value of the counter i while still in
the critical region. That is because once the thread leaves the critical region, there is no guarantee
that the value of i would remain the same before returning the value of i. Using the variable n
guarantees that the value returned is correct even if the value of i is changed by another thread.

33.2.3 Condition Variables

Mutexes protect shared data in critical regions, and block threads if more than one thread tries to
enter the critical region. Condition variables provide thread blocking/resumption that is not tied to
accessing shared data like a mutex. A condition variable allows a thread to block until an event
happens or a condition changes. For example, in a producer/consumer problem, a consumer keeps
spinning to get values out of the shared list. In similar situations in real life applications, any
spinning could be a waste of resources; other threads including producer threads could be using
the resources doing something useful instead. The consumer should block until there is data to
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process in the list. This is where a condition variable comes into play. A condition variable can be
created using the function condvar(). The return object is a condition variable that can be used with
wait() and signal() functions. wait(cv) blocks the current thread on the condition variable cv. The
thread remains blocked until another thread does a signal(cv), which wakes up one thread blocked
on cv. A very important aspect of using a condition variable is that the condition variable is always
associated with a mutex. More specifically, the wait() function has to be always protected by a
mutex. Unicon provides a built-in mutex for condition variables which can be thought of as an
attribute, similar to thread safe data structures. This means a condition variable can also be used
with lock()/unlock() functions or the critical clause. It is important to realize that not only wait() has
to be protected by a critical region, but also the condition or the test that leads a thread to wait on
a condition variable. The signal() function takes a second optional parameter denoting the number
of threads to be woken up. By default, that number is one, but it can be any positive value. From
example:

every !4 do signal(cv)

Can be written as:

signal(cv, 4)

Furthermore, if all of the threads waiting on cv needs to be woken up, a special 0 ( or
CV_BROADCAST) value can be passed to signal() causing it to broadcast a wakeup call for all
threads waiting on cv:

signal(cv, 0)

or
signal(cv, CV_BROADCAST)

33.3 Thread Communication

Co-expressions, as explained in 2.1.11 (page 31), have a simple form of communication influenced
by their synchronous execution. Threads on the other hand, run in parallel, creating a dynamic
environment for communication. In many cases, a running thread must send a value to another
thread without waiting for results, or receive a value from another thread if there is one without
waiting. The @ operator is not suitable for this kind of (asynchronous) communication. Threads
communication needs to go well beyond co-expressions, for which a single @ operator provided
communication bundled with synchronization. Unicon adds four operators for asynchronous com-
munication. These are @>, @>>, <@ and <<@. The operators correspond to send, blocking send,
receive and blocking receive.
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33.3.1 Thread messaging Queues

Thread communication is done through messaging queues that are initialized at thread creation.
Each thread maintains two queues called the inbox and outbox that are created with the thread.
When a thread sends a message with an explicit destination, the message is queued in the destina-
tion’s inbox. Otherwise it is queued into the sender’s outbox. A thread can receive messages from
another thread by dequeuing messages from the source’s outbox if there is an explicit source, oth-
erwise it dequeues messages from its own inbox. Figure 33.1 presents two threads with the inboxes
and outboxes.

inbox

Thread A

x @> B

Thread B

inbox

outbox outbox

x

y @> y

<@

<@A

Figure 33.1: Threads messaging queues

33.3.2 Send and Receive Operators

The first two operators are @> (send) and <@ (receive). These operators communicate send/receive
messages between threads. The semantics support co-expressions as well which also have inboxes
and outboxes. It does not matter whether threads or co-expressions are involved in the communi-
cation, the semantics are the same. The send operator has the syntax

x@>T

x can be any data type including null, which is equivalent to omitting it. T refers to a thread to
which x is transmitted. x is placed in T’s inbox. x can be picked by T using the receive operator
which is presented later. The send operator can also have no destination such as:

x@>

In this case x is sent to no one, instead it is placed in the sender’s outbox. The operator can be read
as “produce x”. x can then be picked up later by any thread wanting a value from this sender. For
example the sender thread in this case might be a thread creating prime numbers and placing them
in its outbox to be ready for other worker threads.

The receive operator is symmetric to the send operator and takes two forms, with explicit source
or with no source as follows:
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<@T
<@

The first case reads: receive a value from T, which gets a value from T’s outbox, a value
produced by T. Going back to the prime number example mentioned above, <@T would be the way
to pick a prime number produced by the prime number generator thread T. <@ on the other hand
reads values directly from the receiver’s inbox. It reads messages sent directly to the current thread
doing the receive. Both @> and <@ can succeed or fail. In the case of <@ the operator succeeds
and returns a value from the corresponding queue (inbox/outbox) depending on the operand if the
queue is not empty. If the queue is empty the operation fails directly. In the case of @>, if the value
is placed in the corresponding queue, the operation succeeds and returns the size of the queue. If
the queue is full, the send operation fails. The inbox/outbox for each thread is initialized to have
a limited size (it can hold up to 1024 values by default). This limit can be increased or decreased
depending on the application needs. The limits are useful so that queue sizes do not explode
quickly by default and also to have an implicit communication/synchronization as explained later
in this section.

Each thread has exactly one inbox and one outbox, and each operator call is mapped to only
one of these inboxes or outboxes as seen in Figure 33.1. All messages from all threads coming to
thread B in the figure end up in its inbox. All threads trying to receive messages from A compete
on its outbox. Both the inbox and the outbox queues are public communications channels, and it
is impossible to distinguish the source of a message if there are several threads sending messages
to the same thread at the same time. Furthermore, if <@ has an explicit source like A in Figure
33.1 it only looks in A’s outbox, and does not see messages from A coming directly to the inbox.
Applications that require the sender’s address can attach that information to messages by building
them as records with two fields, one field for data and the other containing the sender’s address. A
better approach for private communications for some applications is the use of lists shared between
the two communicating threads or the use of private communication channels discussed later in this
chapter.

33.3.3 Inbox/Outbox and the Attrib() Function

As seen in previous subsections, communications between threads is done through inbox/outbox
queues which are governed by size limits. The size limit (defaults to 1024) and the actual size
dictate how synchronization is melted with the communication. The size operator * can be used
with a thread to query its actual outbox size (how many values it contains, not the maximum limit)
and can be used as follows:

outbox_size := *T
But this is only a single attribute for one queue. To access or change the different attributes, a new
function was introduced to Unicon: Attrib(), which uses the form:
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Attrib(handle, attribcode, value, attribcode, value, ...)
The integer codes used by the Attrib() function are supplied by an include file (threadh.icn) with
$define symbols for the attributes. This header file is part of a new thread package that is part of
the Unicon distribution called package threads. It can be imported to a program via:

import threads
When values are omitted, Attrib() generally returns attribute values. To get the size of the outbox
(similar to what the * operation does in the example presented earlier), the code is:

outbox_size := Attrib(T, OUTBOX_SIZE)
similarly,

inbox_size := Attrib(T, INBOX_SIZE)
gets the current size of the inbox. On the other hand,

Attrib(T, INBOX_LIMIT, 64, OUTBOX_LIMIT, 32)
sets the inbox and outbox size limits to 64 and 32 respectively. Table 33.1 summarizes all of the
available attributes and their meanings.

Attribute Meaning Read/Write

INBOX_SIZE Number of items in the inbox Read Only

OUTBOX_SIZE Number of items in the outbox Read Only

INBOX_LIMIT The maximum number of items allowed in the inbox Read/Write

OUTBOX_LIMIT The maximum number of items allowed in the outbox Read/Write
Table 33.1: Thread’s communication queues attributes

33.3.4 Blocking Send and Receive

In many situations, senders and receivers generate and consume messages at different speeds. For
example if there is thread that generates prime numbers very fast to be used by other slow threads,
the prime number generator thread should not continuously generate prime numbers, but create a
batch and wait until it is all used before generating another batch. Instead of overloading slow
receivers or busy waiting for slow senders, the two ends of communication require a synchronizing
mechanism to tell when to send new messages or when a new message is available. Two more send
and receive operators provide such functionality, these are the blocking send operator @>> and the
blocking receive operator <<@. These operators can be used in the same way @> and <@ are used,
except that instead of failing when the operation cannot be completed, the new operators block and
wait until the operation succeeds. This is useful in situations where a value is required to proceed,
allowing the thread to block instead of spinning waiting for a value.

In some cases, a thread might want to use a blocking receive to get values from a second thread,
but it is not willing to block indefinitely; probably the thread can do some other useful work instead
of waiting. The <<@ accepts a timeout parameter to impose a limit on how long to wait for a result
before giving up. Here is how <<@ would look like in this case:
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result := timeout <<@ # get from the current thread inbox

or
result := timeout <<@ T # get from T’s outbox
The timeout operand is a non-negative integer denoting the maximum time to wait in millisec-

onds. Negative integers are treated as a null value, an indefinite blocking receive. A 0 operand
indicates no waiting time, making the end behavior effectively similar to a non-blocking receive.
Table 33.2 summarizes the different forms of the send and receive operators and their operands:

Operator Operands Behavior

@>
(send)

msg@> Place msg in the current thread’s outbox, fail if the outbox is full

msg@>T Place msg in T’s inbox, fail if T’s inbox is full

<@
(receive)

<@ Get a message from the current thread’s inbox, fail if it is empty

<@T Get a message from T’s outbox, fail if T’s outbox is empty

@>>
(blocking send)

msg@>> Place msg in the current thread’s outbox, block if the outbox is full

msg@>>T Place msg in T’s inbox, block if the T’s inbox is full

<<@
(blocking
receive)

<<@ Get a message from the current thread’s inbox, block if it is empty

<<@T Get a message from T’s outbox, block if T’s outbox is empty

n<<@ Get a message from the current thread’s inbox, block up to n
milliseconds if the inbox is empty waiting for new messages

n<<@T Get a message from T’s outbox, block up to n milliseconds if T’s
outbox is empty, waiting for new messages to become available

Table 33.2: Summary of the new communication operators

33.3.5 Private Communication Channels

Inbox and outbox communication queues are visible by all threads all the time. In some scenarios
two or more threads need to communicate with each other without worrying about other threads
sending and receiving messages using the same shared queues. While it is possible to build a
protocol at the application level on top of the inbox and outbox queues to achieve such behavior, it is
simpler and more efficient to have the threads communicate privately. This kind of communication
can be done by sharing a list between two threads and protecting it by an explicit mutex, or using a
thread-safe list. A more formal way for such communication is to use the channel() function.

Starting a private communication is similar to a network connection, except that this connection
is taking place between two threads in the same process instead of two different processes that
may be on different machines. A private communication channel between two threads and can be
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created using the function channel(). channel() is part of the threads package (which was added to
Unicon’s class library) and takes one parameter, which is the thread with which the connection will
be initiated. If channel() succeeds, it returns a list representing a communication channel between
the two threads. Representing a bidirectional channel that can be used by the two threads, given that
each thread calls the function channel() with the other thread as an argument. Here is an example.
In thread A:

chB:= channel(B) | stop("failed to open a channel with B")

In thread B:

chA:= channel(A) | stop("failed to open a channel with A")

This channel is a directional communication channel. One thread should use it as an outbox, and
the other should use it as an inbox. That means only one thread will send messages over the channel
while the other receives them from the other end. For many problems, one thread produces results
while one or more threads consume these results, making the directional nature of the channel
suitable for such problems. In cases where the communication is needed in both directions, the two
communicating threads can open two channels to send messages in both directions. The provided
channels can be used with the communication operators (all four of them) with the same semantics
as before. The only difference in this case is that the right operand is a communication channel
instead of a thread. The channel() function also accepts a second parameter as an identifier for the
channel so that the two ends of the channel find each other easily without depending on the order
in which the channel() function is called.

33.4 Virtual Machine Changes

The Unicon virtual machine is the Icon virtual machine, extended to better accommodate object-
oriented programming. The extensions made to support true concurrency would apply equally to
the Icon implementation. Other similar languages face analogous situations, where the lessons
learned here may be applicable. Two main issues had to be addressed in order to allow concurrent
execution of multiple threads in the VM. First, the VM’s state had to be replicated per thread, and
second, self-modifying instructions and the initial clause had to be protected against race conditions.
The two issues are discussed in the following two subsections.

33.4.1 VM Registers

Thread-local storage is utilized to provide each thread with its own copy of the virtual machine
registers, which were formerly global variables in the VM C code. These include the program
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counter, stack pointer, the several frame pointers necessary to manage calls, returns, suspension
and resumption on the stack, and other pieces of virtual machine state. To add concurrency, these
elements of state are moved into a struct threadstate that is allocated for each thread, and keeps
all thread-specific VM state information. The threadstate is fairly large, under the assumption that
memory is cheap whereas thread synchronization is expensive. POSIX threads API calls are used
to obtain references to the threadstate structure where it is needed. A key concern when using
thread-local storage is performance. Initially, all references to VM registers were replaced, via
macros, by references through a global threadstate pointer variable declared with the compiler stor-
age specifier __thread that is available in some compilers such as gcc and Sun’s (now Oracle’s) cc.
This implementation is straightforward but incurs a substantial performance cost. In addition, the
__thread keyword is not currently available in the pthreads implementation on OS X and that of
Mingw gcc on Microsoft Windows. Switching to the more portable pthreads API for thread-local
storage using pthread_getspecific() allows a faster implementation than __thread. The straightfor-
ward implementation invoked pthread_getspecific() once at the top of each C function containing
references to VM register and state variables. The many calls to this API wherever the VM state is
referenced in the runtime system entail an insignificant performance cost.

33.4.2 Self-Modifying Instructions

The Unicon virtual machine has seven instructions that contain integer offsets as operands. These
offsets refer to memory addresses within the instruction region, or to static data regions of the byte-
code. They are used for several types of literals, globals, static variables, and also for instructions
that jump to addresses, such as Op_Goto. For performance reasons, when the opcode is first en-
countered, offsets are converted to absolute pointers. The opcode is modified to indicate that the
operand is now a pointer, and the instruction proceeds at full speed on subsequent executions.

This implementation introduces a race condition when multiple threads execute the self-
modifying instruction at the same time. The problem was solved by adding a mutex for each
self-modifying instruction opcode. Figure 33.2 shows an example self-modifying instruction code
protected with a mutex. Mutex contention could be reduced further by allocating a separate mutex
for each instance of each opcode (requiring a number of mutexes proportional to the size of the
program) instead of using just seven mutexes for the seven self-modifying opcodes; it is unlikely
that this would be worth implementing, since the number of instances is large and each instance
of a self-modifying instruction uses its mutex only once when it replaces itself. To provide a
thread safe initial clause (discussed in 33.2.2) at the language level, a similar technique used for
self-modifying instructions was utilized, unlike self-modifying instructions, where locking and un-
locking take place at the same instructions, with initial clause, the locking happens at the beginning
of the clause, and the unlocking happens at the end. To allow such behavior, a new VM instruction
was introduced which takes care of updating the instruction at the beginning of the clause, and
unlocks the mutex. The updated instruction causes all of the subsequent calls to the function con-
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taining the initial clause made by any thread to skip over the clause. This mechanism effectively
eliminates the need to do any locking/unlocking after it is initialized.

case Op_Real: /* real, offset address */
MUTEX_LOCKID(MTX_OP_AREAL);

if (ipc.op[-1] == Op_Areal) {
MUTEX_UNLOCKID(MTX_OP_AREAL);
goto L_areal;

}
PushVal(D_Real);
opnd = GetWord;
opnd += (word)ipc.opnd;

PushAVal(opnd);
PutInstr(Op_Areal, opnd, 1);
InterpEVValD((dptr)(rsp-1), e_literal);
MUTEX_UNLOCKID(MTX_OP_AREAL);
break;

case Op_Areal: /* real, absolute address */
L_areal:

PushVal(D_Real);
PushAVal(GetWord);
InterpEVValD((dptr)(rsp-1), e_literal);
break;

Lock the mutex

Check if another thread
has done this already

Calculate the absolute address using the offset

Store the absolute address
back in the instruction,
replacing the offset

All of the subsequent references go
at full speed; no locking or address
recalculation is required

Figure 33.2: Self modifying instruction preceded by a mutex

33.4.3 Runtime System Support

Achieving thread-safety in the implementation without a global interpreter lock required extensive
modifications to the runtime system to provide a thread-safe environment. This includes safe use
of the IO subsystem, the underlying libraries and, most importantly, heap management in terms of
allocation and garbage collection.

33.4.3.1 Input/Output Sub-system

The Unicon input output sub-system includes very high-level facilities for accessing files, networks
and messaging, 2D and 3D graphics, databases, pipes and pseudo-ttys. The underlying C library
functions implementing these capabilities are often thread- safe [96]. However, Unicon language-
level IO operations usually involve several underlying library calls that must be atomic with respect



530

to threads. Each IO handle is assigned a mutex when it is opened. Any IO operation that uses this
handle locks the mutex to guarantee the atomicity of such operations. The cost incurred by such
locks is evaluated in section 7.4. The atomicity of IO is guaranteed only within a single Unicon-
level IO operation. For example write(x, y) is atomic and no other thread can write to the same file
while write() is running. If multiple writes or reads are required to be made atomic with respect
to other threads, an explicit lock is needed. In such a case, the IO handle can be passed to the
lock()/unlock() functions to protect it from any access other than from the current thread during the
execution of several IO operations.

33.4.3.2 C Library Thread Safety

In addition to IO, many C library functions called in the Unicon VM were implemented before
threads were widely used in operating systems. A subset of those functions is documented in the
POSIX standards as thread-unsafe. About 40 of these function were used in the runtime system.
Most calls to these thread-unsafe functions were replaced with the thread-safe alternatives available
in modern C implementations. A few, infrequently called, thread-unsafe functions were protected
by mutexes. A couple of the thread-safe alternatives were not portable; new wrapper functions or
implementations were developed in such cases.

33.4.3.3 Allocation and Separate Heaps

Allocation is a frequent operation for which speed is a top priority in the Unicon virtual machine.
Unicon programs start with a heap consisting of one string and one block (structure) region, and
allocate more regions as needed. At any moment, the string and block regions used for allocation
are together referred to as the current heap. If the memory request is bigger than what is available
in the current heap, other regions are checked. If enough memory is found, the current heap is
switched to use the satisfying region; otherwise a new region is allocated. With multiple threads,
safety becomes a concern if only one shared heap is available. When a thread allocates memory in
the current heap and updates the heap’s state variables, the operation must be protected by a mutex.
Otherwise different threads would corrupt each other’s allocation requests, leaving the heap in an
invalid state. A similar situation occurs when some operations in the runtime system deallocate
memory after allocating it for a temporary use.

After determining that the locks required in the shared heap strategy were significantly slowing
down the frequent task of memory allocation, the decision was made to use separate, per-thread
heaps. This allows threads to use their own private heaps at full speed, just like a single-threaded
application. Heaps that are not owned by any thread are referred to as public heaps. Public heaps
are a product of threads out-growing their private heaps. This happens when a thread requests more
memory and that request can only be granted by allocating a new private heap. A program starts
with no public heaps, and with one private heap for the main thread. A new private heap is allocated
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for each new thread if none of the public heap is sufficient. Figure 33.3 shows the heap layout with
regards to threads. when a thread finishes, its heap goes back to the pool of public heaps.

Thread 1 Thread 1 heap

Thread 2 Thread 2 heap

Thread 3 Thread 3 heap

Thread n Thread n heap

Private heaps

Pool of Public Heaps

Public heap 1

Public heap 2

Public heap m

Figure 33.3: Threads, private heaps and public heaps

All heaps (public and private) are visible to all threads, so any thread can access variables
and data structures in any heap at any time. The accesses can be controlled or protected at the
application level, if needed, in the case of a shared variable. The terms private and public heaps
here are limited to allocating memory in the heaps, and are not to be confused with memory access
to heaps in general. In other words, a thread can allocate memory only in its private heap, but can
access (read and write) variables in all heaps. Having a full private heap does not mean a thread will
automatically allocate a new fresh heap. When a memory request cannot be granted in the private
heap, public heaps are checked to see if any of them has enough free memory to grant the request.
If so, the private heap is swapped with the public heap, changing the private heap to public and
vice-versa. The pool of public heaps is protected by a mutex. If public heaps do not have enough
free memory, a garbage collection will take place. If the memory request cannot be granted even
after that, the thread allocates a fresh heap.

33.4.4 Garbage Collection

The frequency of garbage collection depends on heap size and application memory usage patterns.
Historically, many Icon applications ran to completion without ever garbage collecting. However,
modern object oriented event-driven applications run for longer periods of time, and garbage collect
proportionally often, despite increases in physical memory and heap size. When garbage collection
does occur, it concerns every thread. Since garbage collection does not happen often (examples are
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given in Chapter 9), the design philosophy is to keep garbage collection as simple as possible under
concurrent execution. To allow safe access to data in the heaps, garbage collection suspends all
running threads except the thread which triggered it, referred to as the GC thread. The GC thread
performs a conventional garbage collection, during which the program runs sequentially.

MUTEX_LOCKID(MTX_NARTHREADS);
NARthreads–;
MUTEX_UNLOCKID(MTX_NARTHREADS);

THREAD_JOIN(thread);

MUTEX_LOCKID(MTX_THREADCONTROL);
MUTEX_LOCKID(MTX_NARTHREADS);
NARthreads++;
MUTEX_UNLOCKID(MTX_NARTHREADS);
MUTEX_UNLOCKID(MTX_THREADCONTROL

Decrement the counter (Number of
Asynchronous Running Threads)

Do a blocking operation (join in this
case), a system call (long IO for example)
or a delay, etc.

Wait for GC to finish, if there is
one. Increment the counter.

Figure 33.4: Tracking the number of running threads in the system

The GC thread first locks the garbage collection mutex MTX_THREADCONTROL, and then sets
a global flag that announces the need to perform garbage collection. It directs all running threads
to converge to a special routine called thread_control, the coordination point for thread suspension
and resumption. The global flag is checked by all threads once per virtual machine instruction. The
runtime system keeps track of how many threads are running using a global counter NARthreads,
which is incremented and decremented by the threads depending on their state: before a thread
blocks on a mutex it decrements the counter, and increments it after unblocking. The counter
itself is protected by a mutex and can be incremented only if there is no garbage collection request
pending or taking place (Figure 33.4).

After a call for garbage collection causes a thread to enter the thread_control function, the
thread decrements the running threads counter NARthreads and goes to sleep on the gc condition
variable. The GC thread keeps testing the running threads counter until its value decreases to 1,
meaning that the GC thread is the only thread running. Then the GC thread proceeds to perform the
garbage collection. After finishing, the GC thread unlocks the garbage collection mutex, and does a
broadcast to the gc condition variable. This wakes up all of the threads blocked on the gc variable,
allowing them to resume their execution and return to where they called the thread_control function
in the first place.

In garbage collection-intensive applications, it may happen that two (or more) threads trigger
a garbage collection at the same moment. This situation can be handled in various ways. The
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simplest solution is to block all of the threads requesting garbage collection after the first one and
let the first one proceed and finish as described above (block all of the other threads and then wake
them up again). A better solution, the one adopted in this design, is to make the threads that are
competing for garbage collection aware of each other. Instead of a sequence of block all others
followed by a wake up others performed by each GC thread, a GC thread can hand the control
over to the next GC thread in line, if there is one, and then go to sleep. Only the last GC thread in
the line wakes up all of the blocked threads. This strategy eliminates intermediate block/wakeup
operations, leaving only one block others operation by the first GC thread and one wake up others
operation by the last GC thread. A counting semaphore (gc semaphore) controls the queuing and
synchronizing of several threads to garbage collect. The first thread to request a garbage collection
does not block on the semaphore, but subsequent requesters do. After finishing garbage collection,
each thread signals the semaphore to wake up the next GC thread and goes to sleep. The last GC
thread to wake up is responsible for waking up all of the threads after finishing.

An additional measure increases the effectiveness of the strategy just described: triggering an
artificial garbage collection if another thread has a garbage collection request pending. After a
thread triggers a garbage collection and starts the protocol to suspend all other threads, each thread
answers the call, but before going to sleep on the gc condition variable it checks if its heap is nearly
full. The nearly full value depends on the heap size, the number of threads, and the nature of the
application. Tests indicate that generally, a value in the range 90%-95% is reasonable for most
applications (garbage collection example statistics are given in Table 9.1 ). Thus if the threads heap
has only 5%-10% of its total size free, the thread queues up to do garbage collection instead of going
to sleep on the gc condition variable. This technique forces several garbage collections that might
be separated by very short periods of time to cluster together, requiring only a single suspension
for all of the threads to do the several garbage collections. Figure 33.5 shows an abstract overview
of garbage collection and concurrency control.
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Figure 33.5: A high level view of the dynamics of suspending/resuming threads for GC



Chapter 34

Execution Monitoring

This chapter describes the implementation of program execution monitoring facilities in Unicon.
Prior to these facilities, some simple monitors of Icon programs had been written in C, using instru-
mentation that was added to generate log files from the C implementation of Icon’s virtual machine,
iconx. Development of these tools in C was too labor intensive for experimental research work. The
primary goal of the monitoring facilities is to allow monitors for Icon and Unicon to be written in
Unicon instead of C.

The monitoring facilities were added by writing a dynamic loader for Icon icode and extending
the co-expression data type to allow the loading and execution of programs as co-expressions within
the same virtual machine. This was considered viable to achieve high performance, since the co-
expression switch was frequently and publically extolled by Ralph Griswold as being very high
performance (comparable to a procedure call in Icon), while transmitting monitoring information
to a separate process via pipes, sockets or any other means that would require operating system
synchronization was considered too expensive.

Since that time, the co-expression type has gotten much slower in Icon, whose current im-
plementation has eliminated native assembler co-expressions in favor of a portable pthreads im-
plementation and removed the monitoring facilities entirely. In Unicon, the monitoring facilities
remain a compelling reason to retain native co-expressions indefinitely, since they constitute the
core of the Unicon debugger udb, and the profiler uprof.

34.1 Dynamic Loading and the Program State

Several major changes were required in order to support multiple programs in the virtual machine.
Loading the icode into a separate malloced area was the easy part. Numerous global and/or static C
variables contained program-specific state – on a abstract level they could be considered “registers”
of the Icon virtual machine. In practice, they must be saved/restored whenever switching between
programs, and it was quickly found that they were too numerous to easily save and restore: switch-
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ing time would be too slow. Instead, these variables were all moved into a new structure, and a
pointer to this structure became the one variable that needed to be saved/restored whenever switch-
ing between programs. The variable was named curpstate and the structure in src/h/rstructs.h
looks like:

/*
* Program state encapsulation. This consists
* of the VARIABLE parts of many global structures.
*/
struct progstate {
long hsize; /* size of icode */
/* hsize is a constant defined at load time, MT safe */
struct progstate *parent;
/* parent is a constant defined at load time, MT safe */
struct progstate *next;
/* next is a link list, seldom used, needs mutex */
struct descrip parentdesc; /* implicit &parent */
/* parentdesc is a constant defined at load time, MT safe */
struct descrip eventmask; /* implicit &eventmask */
/* eventmask is read-only (to me), MT safe */
struct descrip eventcount; /* implicit &eventcount */
struct descrip valuemask;
struct descrip eventcode; /* &eventcode */
struct descrip eventval; /* &eventval */
struct descrip eventsource; /* &eventsource */

/* Systems don’t have more than, oh, about 50 signals, eh?
* Currently in the system there is 40 of them */
struct descrip Handlers[41];
/*int Inited; not used anymore */
int signal;
/*
* trapped variable keywords’ values
*/
struct descrip Kywd_err; /* Probably mutex. not important now */
struct descrip Kywd_prog;

struct descrip Kywd_trc; /* leave global for now */
struct b_coexpr *Mainhead;
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char *Code;
char *Ecode;
word *Records;
int *Ftabp;
#ifdef FieldTableCompression
short Ftabwidth, Foffwidth;
unsigned char *Ftabcp, *Focp;
short *Ftabsp, *Fosp;
int *Fo;
char *Bm;
#endif /* FieldTableCompression */
dptr Fnames, Efnames;
dptr Globals, Eglobals;
dptr Gnames, Egnames;
dptr Statics, Estatics;
int NGlobals, NStatics;
char *Strcons;
struct ipc_fname *Filenms, *Efilenms;
struct ipc_line *Ilines, *Elines;
struct ipc_line * Current_line_ptr; /* not used or what ?*/

#ifdef Graphics
struct descrip AmperX, AmperY, AmperRow, AmperCol;
struct descrip AmperInterval; /* &interval */
struct descrip LastEventWin; /* last Event() win */
int LastEvFWidth;
int LastEvLeading;
int LastEvAscent;
uword PrevTimeStamp; /* previous timestamp */
uword Xmod_Control, Xmod_Shift, Xmod_Meta; /* control,shift,meta */
struct descrip Kywd_xwin[2]; /* &window + ... */

#ifdef Graphics3D
struct descrip AmperPick; /* &pick */
#endif /* Graphics3D */
#endif /* Graphics */

word Coexp_ser; /* this program’s serial numbers */
word List_ser;



538

word Intern_list_ser;
#ifdef PatternType
word Pat_ser;
#endif /* PatternType */
word Set_ser;
word Table_ser;

word Kywd_time_elsewhere; /* ???? TLS vs global &time spent in other programs */
word Kywd_time_out; /* ???? TLS vs global &time at last program switch out */

#ifdef Concurrent
word mutexid_stringtotal;
word mutexid_blocktotal;
word mutexid_coll;

struct region *Public_stringregion; /* separate regions vs shared */
struct region *Public_blockregion; /* same above */
#endif /* Concurrent */
struct region *stringregion; /* separate regions vs shared */
struct region *blockregion; /* same above */

/* in case we have separate heaps, i.e ThreadHeap is defined
* total here will be only for "dead" threads */
uword stringtotal; /* cumulative total allocation */
uword blocktotal; /* cumulative total allocation */

word colltot; /* m total number of collections */
word collstat; /* u number of static collect requests */
word collstr; /* t number of string collect requests */
word collblk; /* ex number of block collect requests */

struct descrip K_main;
struct b_file K_errout;
struct b_file K_input;
struct b_file K_output;

/* dynamic record types */
int yyy;
int Longest_dr;
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struct b_proc_list **Dr_arrays;

/*
* Function Instrumentation Fields.
*/
#ifdef Arrays
int (*Cprealarray)(dptr, dptr, word, word);
int (*Cpintarray)(dptr, dptr, word, word);
#endif /* Arrays */
int (*Cplist)(dptr, dptr, word, word);
int (*Cpset)(dptr, dptr, word);
int (*Cptable)(dptr, dptr, word);
void (*EVstralc)(word);
#ifdef TSTATARG
int (*Interp)(int,dptr, struct threadstate*);
#else /* TSTATARG */
int (*Interp)(int,dptr);
#endif /* TSTATARG */
int (*Cnvcset)(dptr,dptr);
int (*Cnvint)(dptr,dptr);
int (*Cnvreal)(dptr,dptr);
int (*Cnvstr)(dptr,dptr);
int (*Cnvtcset)(struct b_cset *,dptr,dptr);
int (*Cnvtstr)(char *,dptr,dptr);
void (*Deref)(dptr,dptr);
struct b_bignum * (*Alcbignum)(word);
struct b_cset * (*Alccset)();
struct b_file * (*Alcfile)(FILE*,int,dptr);
union block * (*Alchash)(int);
struct b_slots * (*Alcsegment)(word);
#ifdef PatternType
struct b_pattern * (*Alcpattern)(word);
struct b_pelem * (*Alcpelem)(word, word *);
int (*Cnvpattern)(dptr,dptr);
int (*Internalmatch)(char*,int,int,struct b_pelem*,int*,int*,int,int);
#endif /* PatternType */
struct b_list *(*Alclist_raw)(uword,uword);
struct b_list *(*Alclist)(uword,uword);
struct b_lelem *(*Alclstb)(uword,uword,uword);



540

#ifndef DescriptorDouble
struct b_real *(*Alcreal)(double);
#endif /* DescriptorDouble */
struct b_record *(*Alcrecd)(int, union block *);
struct b_refresh *(*Alcrefresh)(word *, int, int);
struct b_selem *(*Alcselem)(dptr, uword);
char *(*Alcstr)(char *, word);
struct b_tvsubs *(*Alcsubs)(word, word, dptr);
struct b_telem *(*Alctelem)(void);
struct b_tvtbl *(*Alctvtbl)(dptr, dptr, uword);
struct b_tvmonitored *(*Alctvmonitored) (dptr);
void (*Deallocate)(union block *);
char * (*Reserve)(int, word);

struct threadstate *tstate, maintstate;
};

34.2 Event Instrumentation, Filtering and Reporting

Interesting behavior within the Unicon virtual machine is instrumented using macros. Originally
the macros were defined as no-ops or as output statements that would write to logfiles. In the mon-
itoring facilities, the macro can instead be defined to check whether that event has been requested
by a monitor, and if so, to report that event.

The monitoring macros began with clean and simple form. They have been elaborated many
times and are now more subtle. Originally the macros consisted of

#define EVVal(value,event) ...
#define EVValD(dp,event) ...

where EVVal() reported an integer event value while EVValD() took a descriptor pointer and re-
ported an arbitrary value. The second argument in both cases was the event code, an integer indicat-
ing what was happening. These macros live in src/h/grttin.h where they are automatically included
in every compile by the rtt program.

34.2.1 Filtering: Event Masks and Value Masks

If all events were reported to the monitor, it would have complete information but be overwhelmed.
Filtering of desired events was essential from the beginning, and was refined over time from a
single level to a two-level process.
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Event codes of interest are specified by monitors using an event set. Since the event codes are
all in the range 0-255, the most efficient representation of these sets is by means of a bit vector, and
the most convenient bit vector implementation already available was the cset data type. Initially,
then, the definitions of EVVal() and EVValD() looked something like

#define EVVal(value,event) \
if (Testb((word)ToAscii(event)), curpstate->eventmask) { \

MakeInt(value, *(curpstate->parent->eventval)); actparent(event); }

Event masks are csets, with individual characters ASCII values indicating which event they
denote. Testb() is the internal cset membership test operation. If the event is of interest (i.e. in the
program’s event mask, set by a monitor), it is reported by placing its value in the parent (monitor)
&eventvalue and calling actparent() to activate and switch control to the parent, thus accomplishing
an event report.

Many of the event codes started with mnemonics, such as P for “procedure call”. Over time,
mnemonics proved unhelpful and all events were in fact re-ordered at some point for efficiency
purposes, such that events must be referred to by symbolic names associated with their unsigned
char integer codes. These names are in src/h/monitor.h and all begin with the prefex E_, as in
E_Pcall for “procedure call event”.

Event masks were essential in creating run-time monitoring facilities, but in certain cases, even
more filtering is needed. For example, the event for virtual machine instructions is extremely
frequent. An additional layer of filtering was introduced in the form of value masks, such that for
each event code in the event mask, a (Unicon) set of values of interest could be specified. The macro
became so long that it was preferable to use rtt’s multi-line macro syntax (#begdef...#enddef). With
value mask tests in place the EVVal() macros look more like:

#begdef RealEVVal(value,event,exint,entint)
do {

if (is:null(mycurpstate->eventmask)) break;
else if (!Testb((word)ToAscii(event), mycurpstate->eventmask)) break;
MakeInt(value, &(mycurpstate->parent->eventval));
if (!is:null(mycurpstate->valuemask) &&
(invaluemask(mycurpstate, event, &(mycurpstate->parent->eventval))

!= Succeeded))
break;

exint;
actparent(event);
entint;
} while (0)

#enddef /* RealEVVal */
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The reason that these macro definitions are prefixed “Real” is that they can in turn enabled or
disabled on a per-eventcode basis via

#begdef EVVal(value,event)
#if event

RealEVVal(value,event,/*noop*/,/*noop*/)
#endif
#enddef /* EVVal */

This is probably overkill.

34.3 Instrumented vs. Uninstrumented Run-time Functions

In Icon, the pervasive instrumentation of run-time events was seen to cost about 50% performance,
even when not in use. For this reason a separate copy of the iconx virtual machine was built
specifically for monitoring, an miconx. It was workable but inconvenient to be shipping an extra
copy of the VM executable for monitoring purposes; it took up extra space, and complicated the
build makefile.

For Unicon, a scheme was devised to compile both the instrumented and full-speed uninstru-
mented versions of the 30 runtime functions that had events in them. For each such function, say
cnv_str() for example, the body of the function is placed in a macro that is instantiated twice, once
with events and once without. The macro is parameterized by the event codes that that function has
instrumented within it and is capable of producing:

#begdef cnv_str_macro(f, e_aconv, e_tconv, e_nconv, e_sconf, e_fconv)
/*
* cnv_str - cnv:string(*s, *d), convert to a string
*/
int f(dptr s, dptr d)

{
...
#enddef

#ifdef MultiProgram
#passthru #undef cnv_str
cnv_str_macro(cnv_str,0,0,0,0,0)
cnv_str_macro(cnv_str_1,E_Aconv,E_Tconv,E_Nconv,E_Sconv,E_Fconv)
#else /* MultiProgram */
cnv_str_macro(cnv_str,0,0,0,0,0)
#endif /* MultiProgram */
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So the definition of cnv_str accomplishes the definition of an instrumented cnv_str_1 as a by-
product. In the current implementation, instrumentation of a given function is an all-or-nothing
decision. The macros are capable of supporting multiple, finer-grained instantiations with partial
instrumentation, if desired.

Whether to use the instrumented or uninstrumented version of each of these functions is decided
at runtime on a per-program basis and can change over time. Which functions are in use are
specified by a set of function pointers in the current program state structure. These function pointers
are calculated based on the program’s event mask. Whenever the event mask changes, the set of
instrumented functions is recalculated; this is normally during EvGet() and lives in a function
named assign_event_functions().

void assign_event_functions(struct progstate *p, struct descrip cs)
{

p->eventmask = cs;

/*
* Most instrumentation functions depend on a single event.
*/
p->Cplist =

((Testb((word)ToAscii(E_Lcreate), cs)) ? cplist_1 : cplist_0);...

Using function pointers in the program state instead of direct function calls for these 30 common
functions in the Unicon virtual machine imposes a cost on runtime performance due to added
indirect memory references performed during those calls. The cost was measured and believed to be
under 5% at the time it was introduced, which was considered acceptable for the added capabilities
and convenience of having monitoring available and standard within the regular Unicon virtual
machine.
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Appendix A

Data Structures

This appendix summarizes, for reference purposes, all descriptor and block layouts in Icon and
Unicon. Unicon adds extra fields to many structures in order to manage concurrent threads and to
provide mutual exclusion between threads. These extra fields are drawn in blue.

A.1 Descriptors

Descriptors consist of two words (normally C ints): a d-word and a v-word. The d-word contains
flags in its most significant bits and small integers in its least significant bits. The v-word contains
a value or a pointer. The flags are

n nonqualifier

p v-word contains a pointer

v variable

t trapped variable

A.1.1 Values

There are three significantly different descriptor layouts for values. A qualifier for a string is dis-
tinguished from other descriptors by the lack of an n flag in its d-word, which contains only the
length of the string. For example, a qualifier for the string "hello" is

5
- "hello"

The null value and (small) integers have type codes in their d-words and are self-contained.
Examples are:
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nulln

0

integern

1

For all other data types, a descriptor contains a type code in its d-word and a pointer to a block
of data in its v-word. A record is typical:

recordnp
- block for the record

A.1.2 Variables

There are two formats for variable descriptors. The v-word of an ordinary variable points to the
descriptor for the corresponding value:

offsetnpv
- value descriptor

If the variable points to a descriptor in a block, the offset is the number of words from the top
of the block to the value descriptor. If the variable points to a descriptor that corresponds to an
identifier, the offset is zero.

The descriptor for a trapped variable contains a type code for the kind of trapped variable in its
d-word and a pointer to the block for the trapped variable in its v-word. The trapped variable may
either be a substring or a table element. Both are drawn in section A.2.9.

A.2 Blocks

With the exception of the null value, integers, and strings, the data for Icon values is kept in blocks.
The first word of every block is a title that contains the type code for the corresponding data type.
For blocks that vary in size for a particular type, the next word is the size of the block in bytes.
The remaining words depend on the block type, except that all non-descriptor data precedes all
descriptor data. With the exception of the long integer block, the diagrams that follow correspond
to blocks for computers with 32-bit words.

A.2.1 Long Integers

An Icon integer that fits in the v-word is stored there. An integer that is too large to fit into a
word is stored in a block that is pointed to by the v-word. The two representations of integers are
distinguished by different internal type codes: integer for integers that are contained in the v-words
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of their descriptors and lrgint for integers that are contained in blocks pointed to by the v-words of
their descriptors. Thus, there are two internal types for one source-language data type.

lrgintnp
- lrgint

5,000,000,000

title

A.2.2 Real Numbers

Real numbers are represented by C doubles. For example, on computers with 32-bit words, the real
number 1.0 is represented by

realnp
- real

1.0

A.2.3 Csets

The block for a cset contains the usual type code, followed by a word that contains the number of
characters in the cset. Words totaling 256 bits follow, with a one in a bit position indicating that the
corresponding character is in the cset, and a zero indicating that it is not. For example, &ascii is

000000 ... 000000
000000 ... 000000

000000 ... 000000
000000 ... 000000

111111 ... 111111
111111 ... 111111

111111 ... 111111
111111 ... 111111

cset
128 size of cset

csetnp
-
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A.2.4 Lists

A list consists of a list-header block that points to a doubly-linked list of list-element blocks, in
which the list elements are stored in circular queues. See Chapter 6 for details. An example is the
list

[1,2,3]

which is represented as

nulln

0
slot 3

integern

3
slot 2

integern

2
slot 1

integern

1
slot 0

hdr / ø next list-element block

Unicon replaces the
null pointer used by
Icon with a pointer
to the list header
block.

�

?

hdr / ø previous list-element block

0
3

first slot used
number of slots used

60
4

size of block
number of slots in block

lelem

first list-element block (head)
last list-element block(tail)

cvempty
cvfull
empty
full

max
mutexid
shared

�

�

-

id

list
3 number of elements in the list

listnp
-

Here there is only one list-element block:
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A.2.5 Sets

A set consists of a set-header block that contains segments that point to blocks containing slots for
linked lists of set-element blocks. A set header must be a proper prefix of a table header, and a set
element must be a proper prefix of a table element. See Sec. 7.1 for details. An example is given
by

set([100, 1, 2, 3])

which is represented as

7 mask
mutexid
shared

id

set
4 number of elements in the set

ø
ø
ø
ø
ø

-

ø

-

ø

-

ø
ø

-

ø

slots
40 size

-

-

integern

2 member value

25 hash number
ø next set-element

selem

integern

1

12
ø

selem

integern

3

38

-
selem

integern

100

1294
ø

selem

segment 0

...

segment 5

slot 0

...

slot 7

A.2.6 Tables

A table is similar to a set, except that a table-header block contains the default assigned value as
well as slots for linked lists of table-element blocks. See Sec. 7.2 for details. An example is given
by

t := table()
every t[98 to 100] := 1

The table t is represented as
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7 mask
mutexid
shared

id

table
3 size of the table

ø
ø
ø
ø
ø

-

nulln

0

hdr / ø

-

hdr / ø

-

hdr / ø
hdr / ø

-

hdr / ø

slots
40 size

-

-

integern

1 assigned value

integern

99 entry value

1281 hash number
hdr / ø next table-element
telem

integern

1

integern

98

1268
hdr / ø
telem

integern

1

integern

100

1294
hdr / ø
telem

segment 0

...

segment 5

default value

slot 0

...

slot 7

Unicon replaces the null pointers
used by Icon with pointers to the
table header block.

A.2.7 Procedures

The procedure blocks for procedures and functions are similar. For a procedure declaration such as

procedure calc(i,gj)
local k
static base, index

...
end

the procedure block is
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0 index of first static identifier

1
2

number of local identifiers
number of static identifiers

2 number of arguments

76
- initial ipc
size of block

proc

5
- "index"

4
- "base"

1
- "k"

1
- "j"

1
- "i"

4
- "calc"

In a procedure block for a function, there is a value of -1 in place of the number of dynamic
locals. For example, the procedure block for repl is

0
0

not used
not used

2
-1

number of arguments
function indicator

36
- C entry point
size of block

proc

4
- "repl"

In the case of a function, such as write, which has a variable number of arguments, the number
of arguments is given as -1:
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0
0

not used
not used

-1
-1

indicator of a variable number of arguments
function indicator

36
- C entry point
size of block

proc

5
- "write"

A.2.8 Files

The block for a file contains a pointer to the corresponding file, a word containing the file status,
and a qualifier for the name of the file. For example, the block for &output is

7
- "&output"
file name

2 file status

file
- file

filenp
-

The common file status values are
0 closed

1 open for reading 64 last operation was read

2 open for writing 128 last operation was write

4 open to create 256 I/O on a window (graphics)

8 open to append 512 untranslated mode

16 open as a pipe 1024 reading a directory
Depending on how it was built, Unicon defines other file status values – see the file src/h/rmacros.h
for details.

A.2.9 Trapped Variables

There are two kinds of trapped variables: substring trapped variables, and table-element trapped
variables. The corresponding blocks are tailored to the kind of trapped variable.

A substring trapped variable contains the offset and length of the substring, as well as a variable
that points to the qpalifier for the string. For example, if the value of s is "abcdef", the substring
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trapped-variable block for s[2:5] is

npvs

6

npv
-

3
2

length
offset

tvsubs
tvsubsnptv

-

s[2:5]

6
- "abcdef"

A table-element trapped-variable block contains a word for the hash number of the entry value,
a pointer to the table, the entry value, and a descriptor reserved for the assigned value. For example,
if t is a table, the table-element trapped-variable block for t[36] is

nulln

0
reserved for assigned value

integern

36
entry value

tablenp
- table header block for t

tvtbl
36 hash number

tvtblnptv
-

A.2.10 Co-Expressions

A co-expression block consists of heading information, an array of words for saving the C state, an
interpreter stack, and a C stack:
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C stack

interpreter stack

cstate

cstate[0] (saved C sp)
cstate[1]

refreshnp
- refresh block

nulln

0
most recent activator

saved sp
pointer to transmitted value

saved line number
saved ilevel

saved argp
saved ipc

saved efp
saved gfp

pointer to next co-expression block
saved pfp

coexpr title
size

coexprnp
-

The refresh block contains information derived from the procedure block for the procedure in
which the co-expression was created. Consider, for example,

procedure labgen(s)
local i, j, e
i := 1
j := 100
e := create (s || (i to j) || ":")

...
end

For the call labgen("L"), the refresh block for e is
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nulln

0
value of e

integern

100
value of j

nulln

1
value of i

1
- "L"
value of s

procn
- procedure block
value of labgen

saved line number
saved ilevel

saved argp
saved ipc

saved efp
saved gfp

saved number of arguments
saved pfp

3
initial ipc
number of local identifiers

refresh
88

title
size of block
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Appendix B

Virtual Machine Instructions

This appendix lists all the Icon and Unicon virtual machine instructions. For instructions that
correspond to source-language operators, only the corresponding operations are shown. Unless
otherwise specified, references to the stack mean the interpreter stack. If j > i then exprj is closer
to the top of the stack than expri (i.e. exprj will be popped before expri).
Instructions coloured in blue have been added to the Unicon virtual machine.

acset a Push a descriptor for the cset block at address a onto the stack.

aglobal a Push a variable descriptor pointing to global identifier at address a onto the stack.

agoto a Set ipc to address a.

amark a Create an expression frame whose marker contains the failure ipc corresponding
to the address a, the current efp, gfp, and ilevel.

apply expr1 ! expr2

areal a Push a descriptor for the real number block at address a onto the stack.

arg n Push a variable descriptor pointing to argument n.

asgn expr1 := expr2

astatic a Push a variable descriptor pointing to static identifier at address texttta.

astr n, a Push a descriptor for the string of length n at address a.

bang !expr
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bscan Push the current values of &subject and &pos. Convert the descriptor prior to
these two descriptors into a string. If the conversion cannot be performed, ter-
minate execution with an message. Otherwise, assign it to &subject and assign
1 to &pos. Then suspend. If resumed, restore the former values of &subject and
&pos and fail.

cat expr1 || expr2

ccase Push a copy of the descriptor just below the current expression frame.

chfail n Change the failure ipc in the current expression frame marker to n.

coact Save the current state information in the current co-expression block, restore
state information from the co-expression block being activated, perform a con-
text switch, and continue execution.

cofail Save the current state information in the current co-expression block, restore
state information from the co-expression block being activated, perform a con-
text switch, and continue execution with co-expression failure signal set.

col n Set the current column number to n.

compl ~expr

coret Save the current state information in the current co-expression block, restore
state information from the co-expression block being activated, perform a con-
text switch, and continue execution with co-expression return signal set.

create Allocate a co-expression block and a refresh block. Copy the current procedure
frame marker, argument values, and local identifier values into the refresh block.
Place a procedure frame for the current procedure on the stack of the new co-
expression block.

cset a Push a descriptor for the cset block at icode offset a onto the stack. Becomes
opcode acset on subsequent executions.

diff expr1 -- expr2

div expr1 / expr2

dup Push a null descriptor onto the stack and then push a copy of the descriptor that
was previously on top of the stack.
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efail If there is a generator frame in the current expression frame, resume its gener-
ator. Otherwise remove the current expression frame. If the ipc in its marker is
nonzero, set ipc to it. If the failure ipc is zero, repeat efail.

einit end of initial section. In concurrent VMs, change the init instruction to a goto
here.

eqv expr1 === expr2

eret Save the descriptor on the top of the stack. Unwind the C stack. Remove the
current expression frame from the stack and push the saved descriptor.

escan Dereference the top descriptor on the stack if necessary. Copy it to the place on
the stack prior to the saved values of &subject and &pos (see bscan). Exchange
the current values of &subject and &pos with the saved values on the stack. Then
suspend. If resumed, restore the values of &subject and &pos from the stack and
fail.

esusp Create a generator frame containing a copy of the portion of the stack that is
needed if the generator is resumed.

field n Replace the record descriptor on the top of the stack by a descriptor for field n of
that record.

global n Push a variable descriptor pointing to global identifier n. Becomes opcode
aglobal on subsequent executions.

goto n Set ipc to offset n. Becomes opcode agoto on subsequent executions.

init n Change init instruction to goto. Concurrent VMs impose mutual exclusion at this
point.

int n Push a descriptor for the integer n.

inter expr1 ** expr2

invoke n expr0(expr1,expr2,. . . ,exprn)

keywd n Push a descriptor for keyword n.

lconcat expr1 ||| expr2

lexeq expr1 == expr2
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lexge expr1 >= expr2

lexgt expr1 > expr2

lexle expr1 <= expr2

lexlt expr1 < expr2

lexne expr1 ~== expr2

limit Convert the descriptor on the top of the stack to an integer. If the conversion
cannot be performed or if the result is negative, terminate execution with an
error message. If it is zero, fail. Otherwise, create an expression frame with a
zero failure ipc.

line n Set the current line number to n.

llistn [expr1,expr2,. . . ,exprn]

localn Push a variable descriptor pointing to local identifier n.

lsusp Decrement the current limitation counter, which is immediately prior to the cur-
rent expression frame on the stack. If the limit counter is nonzero, create a
generator frame containing a copy of the portion of the interpreter stack that is
needed if the generator is resumed. If the limitation counter is zero, unwind the
C stack and remove the current expression frame from the stack.

mark Create an expression frame whose marker contains the failure ipc corresponding
to the label n, the current efp, gfp, and ilevel.

mark0 Create an expression frame with a zero failure ipc.

minus expr1 - expr2

mod expr1 % expr2

mult expr1 * expr2

neg -expr

neqv expr1 ~=== expr2

nonnull \expr
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noop Do nothing. Allows insertion of labels at certain points. Can be optimized away.

null /expr

number +expr

numeq expr1 = expr2

numge expr1 >= expr2

numgt expr1 > expr2

numle expr1 <= expr2

numlt expr1 < expr2

numne expr1 ~= expr2

pfail If &trace is nonzero, decrement it and produce a trace message. Unwind the C
stack and remove the current procedure frame from the stack. Then fail.

plus expr1 + expr2

pnull Push a null descriptor.

pop Pop the top descriptor.

power expr1 ^ expr2

pret Dereference the descriptor on the top of the stack, if necessary, and copy it to the
place where the descriptor for the procedure is. If &trace is nonzero; decrement
it and produce a trace message. Unwind the C stack and remove the current
procedure frame from the stack.

psusp Copy the descriptor on the top of the stack to the place where the descriptor
for the procedure is, dereferencing it if necessary. Produce a trace message and
decrement &trace if it is nonzero. Create a generator frame containing a copy of
the portion of the stack that is needed if the procedure call is resumed.

push1 Push a descriptor for the integer 1.

pushn1 Push a descriptor for the integer -1.

quit Exit from the interpreter.
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random ?expr

rasgn expr1 <- expr2

rcv To be completed

rcvbk To be completed

real n Push a descriptor for the real number block at offset n onto the stack. Becomes
opcode areal on subsequent executions.

refresh ^ expr

rswap expr1 <-> expr2

sdup Push a copy of the descriptor on the top of the stack.

sect expr1 [expr2 : expr3 ]

size *expr

static n Push a variable descriptor pointing to static identifier at offset n. Becomes op-
code astatic on subsequent executions.

snd To be completed

sndbk To be completed

str n, a Push a descriptor for the string of length n at offset a. Becomes opcode astr on
subsequent executions.

subsc expr1[expr2]

swap expr1 :=: expr2

synt Syntax construct (Pseudo instruction that assists the Unicon debugger).

tabmat =expr

toby expr1 to expr2 by expr3

unions expr1 ++ expr2

unmark Remove the current expression frame from the stack and unwind the C stack.

value .expr
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var Pseudo-instruction; declares variables in ucode.
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Appendix C

Virtual Machine Code

The virtual machine code that is generated for various kinds of Icon expression is listed below. The
form of code given is icode, the output of the Icon linker cast in a readable format. The ucode
produced’ by the Icon translator, which serves as input to the Icon linker, is slightly different in
some cases, since th linker performs some refinements.

C.1 Identifiers

As mentioned in Sec. 8.2.2, the four kinds of identifiers are distinguished by where their values are
located. All are referred to by indices, which are zero based.

The values of global identifiers are kept in an array that is loaded from the icode file and is
at a fixed place in memory during program execution. By convention, the zeroth global identifier
contains the procedure descriptor for main The following instruction pushes a variable pointing to
the value of main onto the interpreter stack:

main global 0

Static identifiers are essentially global identifiers that are only known on a per-procedure basis.
Like global identifiers, the values of static identifiers are in an array that is at a fixed location. Static
identifiers are numbered starting at zero and continuing through the program. For example, if count
is static identifier 10 the following instruction pushes a variable descriptor pointing to that static
identifier onto the stack:

count static 10

The space for the values of arguments and local identifiers is allocated on the stack when the
procedure in which they occur is called. If x is argument zero and i is local zero for the current
procedure, the following instructions push variable descriptors for them onto the stack:
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x arg 0

i local 0

C.2 Literals

The virtual machine instruction generated for an integer literal pushes the integer onto the stack as
an Icon descriptor. The value of the integer is the argument to the instruction:

100 int 100

The instruction generated for a string literal is similar to that for an integer literal, except that
the address of the string and its length are given as arguments. The string itself is in a region of
data produced by the linker and is loaded as part of the icode file:

"hello" str 5,a1

The instruction generated for a real or cset literal has an argument that is the address of a data
block for the corresponding value. Such blocks are in the data region generated by the linker:

100.2 real a2

’aeiou’ cset a3

C.3 Keywords

The instruction generated for most keywords results in a call to a C function that pushes a descriptor
for the keyword onto the stack. The argument is an index that identifies the keyword. For example,
&date is keyword 4:

&date keywd 4

Some keywords correspond directly to virtual machine instructions. Examples are &null and
&fail:
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&null pnull

&fail efail

C.4 Operators

The code generated for a unary operator first pushes a null descriptor, then evaluates the code for
the argument, and finally executes a virtual machine instruction that is specific to the operator:

*expr
pnull
code for expr

size

The code generated for a binary operator is the same as the code generated for a unary operator,
except that there are two arguments:

expr1 + expr2

pnull
code for expr1
code for expr2

plus

An augmented assignment operator uses the virtual machine instruction dup to duplicate the
result produced by its first argument:

expr1 +:= expr2

pnull
code for expr1
dup
code for expr2
plus

asgn

The difference between the code generated for left- and right-associative operators is illustrated
by the following examples:
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expr1 + expr2 + expr3

pnull
pnull
code for expr1
code for expr2
plus
code for expr3

plus

expr1 := expr2 := expr3

pnull
code for expr1
pnull
code for expr2
code for expr3
asgn

asgn

A subscripting expression is simply a binary operator with a distinguished syntax:

expr1 [ expr2 ]

pnull
code for expr1
code for expr2

subsc

A sectioning expression is a ternary operator:

expr1 [ expr2 : expr3 ]

pnull
code for expr1
code for expr2
code for expr3

sect

Sectioning expressions with relative range specifications are simply abbreviations. The virtual
machine instructions for them include the instructions for performing the necessary arithmetic:
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expr1 [ expr2 +: expr3 ]

pnull
code for expr1
code for expr2
dup
code for expr3
plus

sect

A to-by expression is another ternary operator with a distinguished syntax:

expr1 to expr2 by expr3

pnull
code for expr1
code for expr2
code for expr3

toby

If the by clause is omitted, an instruction that pushes a descriptor for the integer is supplied:

expr1 to expr2

pnull
code for expr1
code for expr2
push1

toby

The code generated for an explicit list is similar to the code generated for an operator. The
instruction that constructs the list has an argument that indicates the number of elements in the list:

[expr1, expr2, expr3]

pnull
code for expr1
code for expr2
code for expr3

llist

C.5 Calls

The code generated for a call also is similar to the code generated for an operator except that a
null descriptor is not pushed (it is provided by the invoke instruction). The argument of invoke is
the number of arguments present in the call, not counting the zeroth argument, whose value is the
procedure or integer that is applied to the arguments:
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expr0(expr1, expr2)

code for expr0
code for expr1
code for expr2

invoke 2

In a mutual evaluation expression in which the zeroth argument of the "call" is omitted, the
default value is -1, for which an instruction is provided:

(expr1, expr2, expr3)

pushn1
code for expr1
code for expr2
code for expr3

invoke 3

C.6 Compound Expressions and Conjunction

The difference between a compound expression and a conjunction expression is illustrated by the
following examples. Note that the code generated for conjunction is considerably simpler than that
generated for a compound expression, since no separate expression frames are needed:

{expr1; expr2; expr3}

mark L1
code for expr1
unmark

L1:
mark L2
code for expr2
unmark

L2:
code for expr3
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expr1 & expr2 & expr3

code for expr1
pop
code for expr2
pop

code for expr3

C.7 Selection Expressions

In the code generated for an if-then-else expression, the control expression bounded and has an
expression frame of its own:

if expr1 then expr2
else expr3

mark L1
code for expr1
unmark
code for expr2

goto L2
L1:

code for expr3
L2:

If the else clause is omitted, mark0 is used, so that if the control expression fails, this failure is
transmitted to the enclosing expression frame:

if expr1 then expr2

mark0
code for expr1
unmark

code for expr2

The code generated for a case expression is relatively complicated. As for similar control
structures, the control expression is bounded. The result it produces is placed on the top of the stack
by the eret instruction, which saves the result of evaluating expr1, removes the current expression
frame, and then push the saved result on the top of the stack. The ccase instruction pushes a null
descriptor onto the stack and duplicates the descriptor just below the current efp on the top of the
stack. This has the effect of providing a null descriptor and the first argument for the equivalence
comparison operation performed by eqv. The second argument of eqv is provided by the code for
the selector clause. The remainder of the code for a case clause removes the current expression
frame marker. in case the comparison succeeds. and evaluates the selected expression:
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C.8 Negation

The not control structure fails if its argument succeeds but produces the null value if its argument
fails:

not expr

mark L1
code for expr
unmark
efail

L1:
pnull

C.9 Generative Control Structures

If the first argument of an alternation expression produces a result, esusp produces a generator
frame for possible resumption and duplicates the surrounding expression frame on the top of the
stack. The result of the first argument is then pushed on the top of the stack, so that it looks as if
the first argument merely produced a result. The second argument is then bypassed. When the first
argument does not produce a result, its expression frame is removed, leaving the second argument
to be evaluated:

expr1 | expr2

mark L1
code for expr1
esusp

goto L2
L1:

code for expr2
L2:

Since alternation is treated as a binary operation, a succession of alternations produces the
following code:
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expr1 | expr2 | expr3

mark L1
code for expr1
esusp

goto L2
L1:

mark L3
code for expr2
esusp

goto L2
L2:

code for expr3
L3:

Repeated alternation is complicated by the special treatment of the case in which its argument
does not produce a result. If it does not produce a result, the failure is transmitted to the enclos-
ing expression frame, since the failure ipc is 0. However, if it produces a result, the failure ipc is
changed by chfail so that subsequent failure causes transfer to the beginning of the repeated alter-
nation expression. The esusp instruction produces the same effect as that for regular alternation.
Note that changing the failure ipc only affects the expression frame marker on the stack. When
mark is executed again, a new expression frame marker with a failure ipc of 0 is created.

| expr

L1:
mark0
code for expr

chfail L1
esusp

In the limitation control structure, the normal left-to-right order of evaluation is reversed and
the limiting expression is evaluated first. The limit instruction checks that the value is an integer
and pushes it. It then creates an expression frame marker with a zero failure ipc. Thus, the limit
is always one descriptor below the expression marker created by the subsequent mark instruction.
The lsusp instruction is similar to the esusp instruction, except that it checks the limit. If the limit
is zero, it fails instead of suspending. Otherwise, the limit is decremented:
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expr1 \ expr2

code for expr2
limit
code for expr1

lsusp

C.10 Loops

The code generated for a repeat loop assures that the expression frame is handled uniformly, re-
gardless of the success or failure of the expression:

repeat expr

L1:
mark L1
code for expr
unmark

goto L1

A while loop, on the other hand, transmits failure to the enclosing expression frame if its control
expression fails. Note that both expr1 and expr2 are evaluated in separate expression frames:

while expr1 do expr2

L1:
mark0
code for expr1
unmark
mark
code for expr2

goto L1

If the do clause is omitted, the generated code is similar to that for a repeat loop, except for the
argument of mark:

while expr

L1:
mark0
code for expr
unmark

goto L1

An until loop simply reverses the logic of a while loop:
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until expr1 do expr2

L1:
mark L2
code for expr1
unmark
efail

L2:
mark L1
code for expr2
unmark

goto L1

The every-do control structure differs from the while-do control structure in that when its con-
trol expression produces a result, its expression frame is not removed. Instead, the result is dis-
carded by pop, and the do clause is evaluated in its own expression frame. The efail instruction
forces the resumption of a suspended generator that may have been produced by an esusp instruc-
tion in the code for expr1:

every expr1 do expr2

mark0
code for expr1
pop
mark0

code for expr2
unmark

efail

Breaks from loops normally occur in the context of other expressions. In the following example,
the break expression removes the expression frame corresponding to the repeat control structure,
evaluates its argument expression, and then transfers to a point beyond the end of the loop:
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repeat
expr1 | break expr2

L1:
mark L1
mark L3
code for expr1
esusp

goto L4
L3:

unmark
code for expr2

goto L2
L4:

unmark
goto L1

L2:

Like break, next normally occurs in the context of other expressions. In the following example,
next transfers control from a selection expression to the beginning of the loop:

while expr1 do
if expr2 then next
else expr3

L1:
mark0
code for expr1
unmark
mark L1
mark L4
code for expr2
unmark

goto L2
L4:

code for expr3
L2:

unmark
goto L1

C.11 String Scanning

String scanning is a control structure, rather than an operator, since the values of &subject and
&pos must be saved and new values established before the second argument is evaluated. This
is accomplished by bscan. The instruction bscan saves the current values of &subject and &pos
and establishes their new values before expr2 is evaluated. escan restores their values prior to the
execution of bscan:
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expr1 ? expr2

code for expr1
bscan
code for expr2

escan

Augmented string scanning is similar to other augmented operations, but it differs in that the
string scanning operation does not push a null value on the stack. The instruction sdup therefore is
slightly different from dup, which is used in other augmented assignment operations:

expr1 ?:= expr2

pnull
code for expr1
sdup
bscan
code for expr2
escan

asgn

C.12 Procedure Returns

The code generated for a return expression consists of the pret instruction. However, it allows for
failure of the argument of return, which is equivalent to fail:

return expr

mark L1
code for expr
pret

L1:
pfail

fail pfail

The code generated for the suspend expression is analogous to the code generated for alter-
nation, except that the result is returned from the current procedure. The efail instruction causes
subsequent results to be produced if the call is resumed:
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suspend expr

mark0
code for expr
psusp

efail

C.13 Co-Expression Creation

The first instruction in the code generated for a create expression is a transfer around the code that is
executed when the resulting co-expression is activated The create instruction constructs a descriptor
that points to the co-expression whose code is at the label given in its argument and pushes this
descriptor on the stack. When the co-expression is activated the first time, evaluation starts at
the label stored in the co-expression. The result that is on the top of the stack is popped, since
transmission of a result to the first activation of a co-expression is meaningless. If expr produces a
result, coret returns that result to the activating co-expression. If expr fails, cofail signals failure to
the activating co-expression:

create expr

goto L3
L1:

pop
mark L2
code for expr
coret
efail

L2:
cofail
goto L2

L3:
create L1



582



Appendix D

Adding Functions and Data Types

Icon is designed so that new functions and data types can be added with comparative ease. This
appendix provides some guidelines for modifying the Icon run-time system and lists useful macro
definitions and support routines. It is designed to be read in conjunction with the source code for the
implementation. The material included here only touches on the possibilities. There is no substitute
for actually implementing new features and spending time studying the more intricate parts of the
Icon system.

This appendix provides an action summary of how to extend the language implementation. For
non-trivial additions, the reader should consult Appendix G which contains a detailed description
of the RTL language in which the run-time system is written.

D.1 File Organization

The Icon system is organized in a hierarchy. Under UNIX, the root of the Icon hierarchy is called
icon.git/trunk (the Unicon root directory is called unicon) and may be located anywhere. Neither
Icon nor Unicon depends on the name of the root directory and, for other operating systems, it may
be named differently.

The root directory has several subdirectories that contain source code, test programs, docu-
ments, and so forth. The source code is in root/src. The subdirectories of src are shown below.

The subdirectory h holds header files that are included by files in the other subdirectories. The
file h/rt.h contains most of the definitions and declarations used in the run-time system.

The rest of the code related to the run-time system is in the subdirectory runtime. Source file
extensions in this directory are .r and .ri for “run-time” and “run-time include” files which are
processed by rtt. First letters of files in this subdirectory indicate the nature of their contents. Files
that begin with the letter f contain code for functions, while files that begin with o contain code
for operators. Code related directly to the interpretive process is in files that begin with the letter
i. “Library” routines for operations such as list construction that correspond to virtual machine
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instructions are in files that begin with the letter l. Finally, files that begin with the letter r hold
run-time support routines.

Within each category, routines are grouped by functionality. For example, string construction
functions such as map are in fstr.r, while storage allocation and garbage collection routines are in
rmemmgt.r.

A simplified file structure is shown below. The emphasis is on directories that contain source
or documentation. Directories that are common to both Icon and Unicon are in black; Icon specific
directories are shown in grey; Unicon specific directories are shown in blue. In some cases there is
additional sub-structure not shown here.

Icon.git/trunk

unicon

bin
Executable binaries
and support files

config Configuration
directories

doc Documents

ipl
Icon program
library

man Man pages

src

tests
benchmarks,
C interface tests,
general tests etc.

uni Unicon library

common common source

h header files

iconc Icon compiler source

icont Icon translator source

lib
Additional libraries
for some platforms

libtp transfer protocol library

preproc preprocessor source

rtt run-time translator source

runtime run-time source

wincap Wincap library source

xpm xpm library source

With one exception – the files used to build the Windows installer program – Unicon has re-
placed the platform-specific configuration files in config with an automated configuration system
based on GNU autoconf.
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D.2 Adding Functions

There are several conventions and rules of protocol that must be followed in writing a new func-
tion. The situations that arise most frequently are covered in the following sections. The existing
functions in f files in runtime provide many examples to supplement the information given here.

D.2.1 Function Declarations

A function begins with the RTL header function{...} name(args), where name is the name of the
function as it is called in a source-language program. For example,

function{1} map(s1,s2,s3)
appears at the beginning of the function map. This header declares the procedure block for the
function and includes information about its number of results (in curly brackets) and the number
and names of its parameters. See Appendix G.

A Z is prepended to the name given to avoid a collision with the names of other C routines in
the run-time system. Thus, the C function that implements map is named Zmap. Although the Icon
function map has three arguments, the corresponding C function has only one: r_args, which is a
pointer to an array of descriptors on the interpreter stack. For example, function {1} map(s1,s2,s3)
generates

int Zmap(r_args)
dptr r_args;

A new function must also be listed via a one-line macro in src/h/fdefs.h. For a fixed number of
arguments the macro is FncDef(name,nargs) and for a variable number of arguments the macro is
FncDefV(name).

D.2.2 Returning from a Function

A function returns control to the interpreter by use of one of three reserved words return, suspend,
or fail, depending on whether the function returns, suspends, or fails, respectively. return and fail
return codes that the interpreter uses to differentiate between the two situations. suspend returns
control to the interpreter by calling it recursively, as described in Sec. 9.3.

The use of return is illustrated by the following trivial function that simply returns its argument:

function{1} idem(x)
abstract { return type(x) }
body {

return x;
}

end
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For example,
write(idem("hello"))

writes hello.
The use of suspend and fail is illustrated by the following function, which generates its first and

second arguments in succession:

function{2} gen2(x,y)
abstract { return type(x) ++ type(y) }
body {

suspend x;
suspend y;
fail;

}

For example,
every write(gen2("hello", "there"))

writes

hello
there

As illustrated previously, fail is used when there is not another result to produce. It is safe to assume
that arguments are intact when the function is resumed to produce another result.

Most functions have a fixed number of arguments. A number of functions such as write, writes,
and stop in the standard Icon repertoire can be called with an arbitrary number of arguments. For
a function that can be called with an arbitrary number of arguments, the final RTL argument is
given a square brackets enclosing a number of arguments, as in function1 name(x[nargs]). When
this format is used, the function is called with two arguments: the number of arguments in the
call and a pointer to the corresponding array of descriptors. For example, function1 write(x[nargs])
generates

Zwrite(r_nargs, r_args)
int r_nargs;
dptr r_args;

Within such a function, the arguments are referenced using array syntax. For example, a func-
tion that takes an arbitrary number of arguments and suspends with them as values in succession
is
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function{*} gen(x[n])
abstract { return type(x[]) } /* probably doesn’t work */
body {

register int i;
for (i = 0; i < n; i++) {

suspend x[i];
}
fail;

}

For example,
every write(gen("hello","there","!"))

writes

hello
there
!

Note the use of fail at the end of the function; the omission of fail would be an error, since returning
by flowing off the end of the function would not provide the return code that the interpreter expects.

D.2.3 Type Checking and Conversion

Some functions need to perform different operations, depending on the types of their arguments.
An example is type(x):

function{1} type(x)
abstract { return string }
body {

type_case x of {
string: inline { return C_string "string"; }
null: inline { return C_string "null"; }
integer: inline { return C_string "integer"; }
real: inline { return C_string "real"; }
cset: inline { return C_string "cset"; }
...

}
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Icon values are stored in descriptors, wherein the d-word serves to differentiate between types.
Strings require a separate test prior to examining the d-word’s type code, but this is abstracted by
the RTL type_case construct.

For most functions, arguments must be of a specific type. As described in Sec. 12.1, type
conversion routines are used for this purpose. For example, the function pos(i) requires that i be an
integer. It begins as follows:

function{0,1} pos(i)
if !cnv:C_integer(i) then runerr(101, i);
abstract { return integer }

body {
...

The RTL syntax for type conversion and defaulting turns around and calls underlying C functions
such as cnv_int() which are defined in src/runtime/cnv.r. If the conversion is successful, the resulting
integer is assigned to i. As indicated by this example, it is the responsibility of a function to
terminate execution by calling runerr if a required conversion cannot be made.

Two string conversion functions are available. cnv_str() allocates space for the converted string
from the heap, while cnv_tstr() requires a buffer, which is supplied by the routine that calls it. See
Sec. 4.4.4. This buffer must be large enough to hold the longest string that can be produced by the
conversion of any value. This size is given by the defined constant MaxCvtLen. For example, the
function to reverse a string begins as follows:

function{0,1} match(s1,s2,i,j)
...
if !cnv:tmp_string(s1) then runerr(103,s1)

for which the generated C code looks like

int Zmatch(dptr r_args)
...
char r_sbuf[1][MaxCvtLen];
...
if (!cnv_tstr(r_sbuf[0], &(r_args[1]), &(r_args[1]))) {

{ err_msg(103, &(r_args[1])); } }

The buffer is used only if a nonstring value is converted to a string. In this case, r_args[1] is
changed to a qualifier whose v-word points to the converted string in r_sbuf[0]. This string does not
necessarily begin at the beginning of r_sbuf[0]. In any event, after a successful call to cnv_tstr, the
argument is an appropriate qualifier, regardless of whether a conversion actually was performed.
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D.2.4 Constructing New Descriptors

Some functions need to construct new descriptors to return. RTL is aware that functions return
descriptors and given type information, its return statement will construct a descriptor for you. As
given in the function type() previously, for example, to return a qualifier for the string "integer", the
following code suffices:

return C_string "integer";

Sometimes it is convenient to explicitly construct a descriptor by assignment to its d- and v-
words. Various macros are provided to simplify these assignments. StrLen() and StrLoc() can be
used to construct a qualifier.

StrLen(result) = 7;
StrLoc(result) = "integer";
return result;

In these last two examples, the returned qualifier points to a statically allocated C string.
There also are macros and support routines for constructing certain kinds of descriptors. For

example, the macro

MakeStr("integer", 7, &result);

accomplishes the sames as the two assignments to StrLoc() and StrLen() in the preceding ex-
ample, and

MakeInt(i, &result);

constructs an integer descriptor containing the integer i in the descriptor result.

D.2.5 Default Values

Many functions specify default values for null-valued arguments. There are RTL constructs for
providing default values. For example,

def:tmp_string(arg, q)

changes arg to the string given by the qualifier q in case arg is null-valued. If arg is not null-valued,
however, its value is converted to a string, if possible, by def_tstr. If this is not possible, the function
should terminate execution with an error message.
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D.2.6 Storage Allocation

Functions that construct new data objects often need to allocate storage. Allocation is done in the
allocated string region or the allocated block region, depending on the nature of the object. Support
routines are provided to perform the actual allocation.

As mentioned in Sec. 11.4, under certain circumstances such as to guarantee that multiple string
allocations are adjacent during a concatenation, predictive need requests may be required before
storage is actually allocated. The function reserve(r, i) requests i bytes of contiguous storage in
region r.

Such a request generally should be made as soon as an upper bound on the amount of storage
needed is known. It is not necessary to know the exact amount, but the amount requested must be
at least as large as the amount that actually will be allocated. For example, the function reads(f, i)
requests i bytes of string storage, although the string actually read may be shorter.

String Allocation. The function alcstr(s, i) copies i bytes starting at s into the allocated string
region and returns a pointer to the beginning of the copy. For example, a function double(s) that
produces the concatenation of s with itself is written as follows:

function1 double(s)
abstract { return string }
if !cnv:str(s) then runerr(103, s)
body {

register int slen = StrLen(s);
reserve(Strings, 2 * slen);
StrLen(result) = 2 * slen;
StrLoc(result) = alcstr(StrLoc(s), slen);
alcstr(StrLoc(s), slen);
return result;

}

If the first argument of alcstr is NULL, instead of being a pointer to a string, the space is allocated
and a pointer to the beginning of it is returned, but nothing is copied into the space. This allows a
function to construct a string directly in the allocated string region.

If a string to be returned is in a buffer as a result of conversion from another type, care must be
taken to copy this string into the allocated string region — otherwise the string in the buffer will be
overwritten on subsequent calls. Copying such strings is illustrated by the function string(x) given
in Sec. 12.1.

Block Allocation. The block allocation code all lives in src/runtime/ralc.r. Macros Al-
cFixBlk(var,structname,typecode) and AlcVarBlk(var,structname,typecode,numdescriptors) allo-
cate fixed and variable-sized blocks, respectively. They are generally used internally by run-time
support routines for allocating each kind of blocks. Such support routines generally initialize block
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as well. For example, alccset() allocates a block for a cset, fills in the title and size words, and
zeroes the bits for the cset:

struct b_cset *alccset()
{

register struct b_cset *blk;
register i;
...
AlcFixBlk(blk, b_cset, T_Cset);
blk->size = -1; /* flag size as not yet computed */

/*
* Zero the bit array.
*/
for (i = 0; i < CsetSize; i++)

blk->bits[i] = 0; return blk;
}

See Sec. D.5.5 for a complete list of block-allocation functions.

D.2.7 D.2.7 Storage Management Considerations

In addition to assuring that predictive need requests are made before storage is allocated, it is
essential to assure that all descriptors contain valid data at any time a garbage collection may
occur, that all descriptors are accessible to the garbage collector, and that all pointers to allocated
data are in the v-words of descriptors.

Normally, all the descriptors that a function uses are on the interpreter stack. Such descrip-
tors are processed by the garbage collector. Occasionally, additional descriptors are needed for
intermediate computations. If such descriptors contain pointers in their v-words, and if a function
body allocates storage or suspends control to code that may allocate storage (potentially triggering
a garbage collection), it is not correct to declare local descriptors, as in

function{1} mesh(x,y)
...

body {
struct descrip d1, d2;
...
subsequent code that may allocate memory, or suspend
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The problem with this approach is that d1 and d2 are on the C stack and the garbage collector has
no way of knowing about them.

RTL syntax provides the tended keyword for this situation:

function{1} mesh(x,y)
...

body {
tended struct descrip d1, d2;
...
subsequent code that may allocate memory, or suspend

Garbage collection can occur only during an allocation or predictive need request. However,
this can occur between the time a function suspends and the time it is resumed to produce another
result. Consequently, if a pointer is kept in a C variable in a loop that is producing results by
suspending, the pointer may be invalid when the function is resumed. Instead, the pointer should
be kept in the v-word of a descriptor that is tended, i.e. accessible to the garbage collector.

D.2.8 Error Termination

An Icon program may terminate abnormally for two reasons: as the result of a source-language
programming error (such as an invalid type in a function call), or as a result of an error detected in
the Icon system itself (such as a descriptor that should have been dereferenced but was not).

In case a source-language error is detected, execution is terminated by a call of the form

runerr(i, &d);

where i is an error message number and d is the descriptor for the offending value. If there is no
specific offending value, the second argument is 0.

The array of error message numbers and corresponding messages is contained in runtime/data.r.
If there is no appropriate existing error message, a new one can be added, following the guidelines
given in Appendix G of Griswold and Griswold 1990.

In theory, there should be no errors in the Icon system itself, but no large, complex software
system is totally free of errors. Some situations are recognizable as being potential sources of prob-
lems in case data does not have the expected values. In such situations, especially during program
development, it is advisable to insert calls of the function syserr, which terminates execution, indi-
cating that an error was detected in the Icon system, and prints its argument as an indication of the
nature of the error. It is traditional to use calls of the form

syserr("mesh: can’t happen");

so that when, in fact, the “impossible” does happen, there is a reminder of human frailty. More
informative messages are desirable, of course.
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D.2.9 Header Files

For RTL .r files, the necessary header files normally will be included automatically. Several of them
are processed by rtt itself; its input automatically includes src/h/grttin.h which includes several of
the header files, special macros, and a bunch of ersatz typedef’s to fool rtt into parsing successfully
without the system includes.

The rest of the includes actually happen during the C compile on rtt’s output since system
includes may use compiler-specific extensions that rtt would not know about. rtt writes an include
to src/h/rt.h to its output files to be processed by the C preprocessor.
The header file rt.h includes the full suite of header files:

../h/define.h platform specific definitions

../h/arch.h (Icon only) automatically generated word size definitions

../h/config.h general configuration information

../h/sys.h system include files (stdio.h etc.)

../h/typedefs.h type definitions for the run-time system

../h/cstructs.h structure definitions and constants for the functions in the
src/common directory

../h/mproto.h (Icon only) prototypes for functions common to several modules

../h/proto.h (Unicon only) prototypes for library functions

../h/cpuconf.h definitions that depend on the computer word size

../h/monitor.h (Unicon only) event code definitions

../h/rmacros.h macros and manifest constants

../h/rstructs.h runtime data structures

../h/graphics.h graphics facilities (if configured)

../h/audio.h audio facilities (Unicon only; if configured)

../h/posix.h posix facilities (Unicon only)

../h/messagin.h messaging facilities (Unicon only)

../h/rexterns.h extern declarations for global variables

../h/rproto.h runtime system function prototypes

All of these files contain appropriate information for the local installation, and no changes in them
should be needed.

D.2.10 Installing a New Function

Both the linker and the run-time system must know the names of all functions. This information is
provided in the header file h/fdefs.h.

In order to add a function, a line of the form
FncDef(name)

must be inserted in h/fdefs.h in proper alphabetical order.
Once this insertion is made, the Icon system must be recompiled to take into account the code

for the new function. The steps involved in recompilation vary from system to system. Information
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concerning recompilation is available in system-specific installation documents.

D.3 Adding Data Types

Adding a new data type is comparatively simple, although there are several places where changes
need to be made. Failure to make all the required changes can produce mysterious bugs.

D.3.1 Type Codes

At present, type codes range from 0 to 25 (31 for Unicon). Every type must have a distinct type
code and corresponding definitions. These additions are made in h/rmacros.h. First, a T_definition
is needed. For example, if a Boolean type is added, a definition such as

#define T_Boolean 26
is needed. The value of MaxType, which immediately follows the type code definitions, must be
increased to 26 accordingly. Failure to set MaxType to the maximum type code may result in
program malfunction during garbage collection. See Sec. 11.3.2.

Next a D_ definition is needed for the d-word of the new type. For a Boolean type, this definition
might be

#define D_Boolean (T_Boolean | F_Nqual)
All nonstring types have the F_Nqual flag and their T_ type code. Types whose v-words contain
pointers also have the F_Ptr flag.

D.3.2 Structures

A value of a Boolean type such as the one suggested previously can be stored in the d-word of
its descriptor. However, most types contain pointers to blocks in their v-words. In this case, a
declaration of a structure corresponding to the block must be added to h/rstructs.h. For example,
a new rational number data type, with the type code T_Rational, might be represented by a block
containing two descriptors, one for the numerator and one for the denominator. An appropriate
structure declaration for such a block is

struct b_rational {
int title;
struct descrip numerator;
struct descrip denominator;

};

Since rational blocks are fixed in size, no size field is needed. However, a vector type with code
T_Vector in which different vectors have different lengths needs a size field. The declaration for
such a block might be
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struct b_vector {
int title;
int blksize;
struct descrip velems[1];

};

As mentioned in Sec. 4.4.2, the size of one for the array of descriptors is needed to avoid problems
with C compilers. In practice, this structure conceptually overlays the allocated block region, and
the number of elements varies from block to block.

Any new structure declaration for a block must be added to the declaration union block in
h/rstructs.h. The order of the fields in a new structure must follow the rules (discussed next) im-
posed by the garbage collector.

D.3.3 D.3.3 Information Needed for Storage Management

In Icon version 8 and later, allocated data may be referred to in two ways: either (as before) in
the v-word of a descriptor, or in one of the pointers in a structure. All pointers to allocated data
must be contained either in the v-words of descriptors or in pointers, since this is the only way the
garbage collector can locate them. Furthermore, all non-descriptor data (including pointers) must
precede any descriptors in a block. The amount of non-descriptor data, and hence the location of
the first descriptor in a block, must be the same for all blocks of a given type. Pointers add new
constraints: If any pointers are present, they must be in one contiguous group and must precede the
first descriptor in the block although they need not be placed immediately before the descriptors. If
any block has a variable number of pointers they must be placed at the end of the block (and there
can be no descriptors in the block).

As described in Sec. 11.3.2, the garbage collector uses the array bsizes to determine the size
of a block and the array firstd to determine the offset of the first descriptor in the block. These
arrays are in rmemmgt.r. When a new data type is added, appropriate entries must be made in these
arrays. Failure to do so may result in serious bugs that occur only in programs that perform garbage
collection, and the symptoms may be mysterious.

There is an entry in bsizes for each type code. If the type has no block, the entry is -1. If
the type has a block of constant size, the entry is the size of the block. Otherwise, the entry is 0,
indicating that the size is in the second word of the block. Thus, the entry for T_Boolean would be
-1, the entry for T_Rational would be sizeof(struct b_rational), and the size for T_Vector would be
0.

There is a corresponding entry in firstd for each type code that gives the offset of the first
descriptor in its corresponding block. If there is no block, the entry is -1. If the block contains
no descriptors, the entry is 0. For example, the entry for T_Boolean would be -1, the entry for
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T_Rational would be WordSize, and the entry for T_Vector would be 2*WordSize, where WordSize
is a defined constant that is the number of bytes in a word.

Two further arrays are used to determine the placement of pointers. firstp is analogous to firstd:
there is one entry per type. If there is no block, the entry is -1. If the type has no pointers the value
is 0, otherwise it is the offset of the first pointer in the block. It is possible to infer the number of
descriptors from the position of the first and the size of the block, but this inference is not always
possible for pointers so an array ptrno is used to indicate how many pointers there are for each type.
If there are no pointers, the value is -1. A value of 0 means that the pointers occupy the rest of the
block (and the block has no descriptors). Otherwise the entry contains the number of pointers in
the block. As with firstd and bsizes, a failure to initialize firstp and ptrno correctly may result in
serious (and mysterious) bugs.

A fifth array, blknames, provides string names for all block types. These names are only used
for debugging, and an entry should be made in blknames for each new data type.

D.3.4 Changes to Existing Code

In addition to any functions that may be needed for operating on values of a new data type, there
are several functions and operators that apply to all data types and which may, therefore, need to be
changed for any new data type.
These are

*x size of x (in runtime/omisc.r)
copy(x) copy of x (in runtime/fmisc.r)
image(x) string image of x (in runtime/fmisc.r)
type(x) string name of type of x (in runtime/fmisc.r)

There is not a concept of size for all data types. For example, a Boolean value presumably does
not have a size, but the size of a vector presumably is the number of elements it contains. The size
of a rational number is problematical. Modifications to *x are easy; see Sec. 4.4.4.

There must be some provision for copying any value. For structures, such as vectors, physical
copies should be made so that they are treated consonantly with other Icon structures. For other
data types, the “copy” consists of simply returning the value and not making a physically distinct
copy. This should be done for data types, such as Boolean, for which there are only descriptors and
no associated blocks. Whether or not a copy of a block for a rational value should be made is a more
difficult decision and depends on how such values are treated conceptually, at the source-language
level. It is, of course, easiest not to make a physical copy.

Some image must be provided for every value. This image should contain enough information
to distinguish values of different types and, where possible, to provide some useful additional
information about the specific value. The amount of detail that it is practical to provide in the
image of a value is limited by the fact that the image is a string that must be placed in the allocated
string region.
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The type must be provided for all values and should consist of a simple string name. For
example, if x is a Boolean value, type(x) should produce "boolean". The coding for type is trivial;
see Sec. D.2.3.

There also are several run-time support routines that must be modified for any new type:

outimage image for tracing (in runtime/rmisc.r)
order order for sorting (in runtime/rcomp.r)
anycmp comparison for sorting (in runtime/rcomp.r)
equiv equivalence comparison (in runtime/rcomp.r)

The image produced for tracing purposes is similar to that produced by image and must be
provided for all data types. However, outimage produces output and is not restricted to constructing
a string in allocated storage. It therefore can be more elaborate and informative.

There must be some concept of sorting order for every Icon value. There are two aspects to
sorting: the relative order of different data types and the ordering among values of the same type.
The routine order produces an integer that corresponds to the order of the type. If the order of a
type is important with respect to other types, this matter must be given some consideration. For
example, a rational number probably belongs among the numeric types, which, in Icon, sort before
structure types. On the other hand, it probably is not important whether vectors come before or
after lists.

The routine anycmp compares two values; if they have the same order, as defined previously,
anycmp determines which is the “smaller.” For example, Boolean “false” might (or might not)
come before “true,” but some ordering between the two should be provided. On the other hand,
order among vectors probably is not important (or well-defined), and they can be lumped with
the other structures in anycmp, for which ordering is arbitrary. Sometimes ordering can be quite
complicated; a correct ordering of rational numbers is nontrivial.

The routine equiv is used in situations, such as table subscripting and case expressions, to
determine whether two values are equivalent in the Icon sense. Generally speaking, two structure
values are considered to be equivalent if and only if they are identical. This comparison is included
in equiv in a general way. For example, equiv need not be modified for vectors. Similarly, for
data types that have no corresponding blocks, descriptor comparison suffices; equiv need not be
modified for Boolean values either. However, determining the equivalence of numeric values, such
as rational numbers, requires some thought.

Although not strictly part of the language proper, there are several routines in the Icon Pro-
gramming Library and the Unicon class libraries that operate on all types. The addition of new
type may require that some of these be modified. A good start to locating code that potentially
requires modification is to search for expressions of the form

case . . . type( . . . ) . . . of
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D.4 Defined Constants and Macros

Defined constants and macros are used heavily in Icon to parameterize its code for different op-
erating systems and computer architectures and to provide simple, high-level constructions for
commonly occurring code sequences that otherwise would be complex and obscure.

These defined constants and macros should be used consistently when making additions to Icon
instead of using ad hoc constructions. This improves portability, readability, and consistency.

Learning the meanings and appropriate use of the existing defined constants and macro defini-
tions requires investment of time and energy. Once learned, however, coding is faster, simpler, and
less prone to error.

D.4.1 Defined Constants

The following defined constants are used frequently in the run-time system. This list is by no means
exhaustive; for specialized constants, see existing functions.

CsetSize number of words needed for 256 bits
LogHuge one plus the maximum base-1O exponent of a C double
LogIntSize base-2 logarithm of number of bits in a C int
MaxCvtLen length of the longest possible string obtained by conversion
MaxLong largest C long
MaxShort largest C short
MaxStrLen longest possible string
MinListSlots minimum number of slots in a list-element block
MinLong smallest C long
MinShort smallest C short
WordSize number of bytes in a word

D.4.2 Macros

The following macros are used frequently in the run-time system. See h/rmacros.h for most of
the definitions and the files included by h/rt.h for the others; see existing routines for examples of
usages.

Arg(n) nth argument to function
ArgType(n) d-word of nth argument to function
ArgVal(n) integer value of v-word of nth argument to function
BlkLoc(d) pointer to block from v-word of d
BlkSize(cp) size of block pointed to by cp
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BlkType(cp) type code of block pointed to by cp
ChkNull(d) true if d is a null-valued descriptor
CsetOff(b) offset in a word of cset bit b
CsetPtr(b, c) address of word c containing cset bit b
DeRef( d) dereference d
EqlDesc(d1, d2) true if d1 and d2 are identical descriptors
GetReal(dp, r) get real number into r from descriptor pointed to by dp
IntVal(d) integer value of v-word of d
Max(i, j) maximum of i and j
Min(i. j) minimum of i and j
Mkint(i, dp) make integer from i in descriptor pointed to by dp
Offset(d) offset from d-word of variable descriptor d
Pointer(d) true if v-word of d is a pointer
Qual(d) true if d is a qualifier
Setb(b, c) set bit b in cset c
SlotNum(i, j) Slot for hash number i given j total slots
StrLen(q) length of string referenced by q
StrLoc(q) location of string referenced by q
Testb(b, c) true if bit b in cset c is one
Tvar(d) true if d is a trapped variable
TvarLoc(d) pointer to trapped variable from v-word of d
Type(d) type code in d-word of d
Var(d) true if d is a variable descriptor
VarLoc(d) pointer to value descriptor from v-word of d
Vsizeof(x) size of structure x less variable array at end
Vwsizeof(x) size of structure x in words less variable array at end
Wsizeof(x) size of structure x in words

D.5 Support Routines

There are many support routines for performing tasks that occur frequently in the Icon run-time
system. Most of these routines are in files in runtime that begin with the letter r. The uses of many
of these support routines have been illustrated earlier; what follows is a catalog for reference.

D.5.1 Comparison

The following routines in runtime/rcomp.r perform comparisons:
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anycmp(dp1, dp2) Compare the descriptors pointed to by dp1 and dp2 as Icon values
in sorting order, returning a value greater than 0, 0, or less than 0
depending on whether the descriptor pointed to by dp1 is respec-
tively greater than, equal to, or less than the descriptor pointed to
by dp2.

equiv(dp1, dp2) Test for equivalence of descriptors pointed to by dp1 and dp2,
returning 1 if equivalent and 0 otherwise

lexcmp(dp1,dp2) Compare string qualifiers pointed to by dp1 and dp2 returning a
value greater than 0, 0 or less than 0 depending on whether the
string referenced by dp1 is respectively greater than, equal to or
less than the string referenced by dp2

numcmp(dp1, dp2, dp3) Compare the descriptors pointed to by dp1 and dp2 as numbers,
putting the converted value of the number referenced by dp2 in
the descriptor pointed to by dp3 and returning 0, 0 or less than
0 depending on whether the number referenced by dp1 is respec-
tively greater than, equal to or less than the number referenced by
dp2

D.5.2 Type Conversion

The following routines in src/runtime/cnv.r perform type conversions:

cnv_cset(s,d) Convert the descriptor pointed to by s to a cset and point d to it.
Return 1 if the conversion can be performed (or is not needed)
and 0 otherwise.

cnv_int(s,d) Convert the descriptor pointed to by s to an integer and store the
value in the location pointed to by d, returning 1 if the conversion
can be performed, but 0 otherwise.

ston(dp,union numeric *result) Convert the string descriptor pointed to by dp to a numeric value
and store the value in the location pointed to by result, returning
the type if the conversion can be performed, but CvtFail otherwise.
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cvpos(i1, i2) Convert i1 to a positive value with respect to the length i2, return-
ing 0 if the conversion is not possible.

cnv_real(sp,dp) Convert the descriptor pointed to by sp to a real number and store
the value in the location pointed to by dp, returning 1 if the con-
version can be performed, but 0 otherwise.

cnv_str(sp, dp) Convert the descriptor pointed to sp to a string, returning 1 if a
resulting string was produced, but 0 otherwise.

strprc(dp, i) Convert the qualifier pointed to by dp to a procedure descriptor if
possible, using i as the number of arguments in the case of a string
that represents an operator, returning 0 if the conversion cannot be
performed.

D.5.3 Defaults

The following routines in src/runtime/def.r produce default values for omitted arguments. They are
generally called internally by RTL constructs.

def_cset(sp, df, dp) If the descriptor pointed to by sp is null, store the cset pointed at
by df at the place pointed to by dp and return 1; otherwise convert
the descriptor pointed to by dp and return 1 if successful. Return
0 if the conversion cannot be performed.

def_int(sp, df, dp) If the descriptor pointed to by sp is null, store df at the location
pointed to by dp and return 1. Otherwise convert the descriptor
pointed to by sp to an integer, store it at the location pointed to by
dp, and return 1. Return 0 if the conversion cannot be performed.

def_str(sp, df, dp) If the descriptor pointed to by sp is null, replace it by the descrip-
tor pointed to by df and return 1. Otherwise convert the descriptor
pointed by sp to a string and return 1, but return 0 if the conver-
sion cannot be performed.

D.5.4 Allocation

The following routines in runtime/ralc.r all return pointers to the objects they allocate:
alcblk(i,j) Allocate a block of i bytes with title j in the allocated block region.
alccoexp() Allocate a co-expression block.
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alccset(i) Allocate a cset block for a cset, setting its size to i.
alcfile(fp, i, dp) Allocate a file block. setting its file pointer to fp, its status to i,

and its name to the qualifier pointed to by dp.
alclint(i) Allocate a long-integer block and place i in it.
alclist(i) Allocate a list-header block and set its size field to i.
alclstb(i1, i2, i3) Allocate a list element block for i1 elements,setting its first field

to i2 and its nused field to i3.
alcreal(r) Allocate a real-number block and place r in it.
alcrecd(i,dp) Allocate a record block with i fields setting its procedure descrip-

tor to the descriptor pointed to by dp.
alcrefresh(ip, i, j) Allocate a refresh block for a procedure with i arguments, j local

identifiers, and entry point ip.
alcselem(dp, i) Allocate a set-element block, setting its member field to the de-

scriptor pointed to by dp and its hash number field to i.
alcset() Allocate a set-header block.
alcstr(sbuf,i) Allocate a string of length i, and copy the string in sbuf into it,

provided sbuf is not NULL.
alcsubs(i, j, dp) Allocate a substring trapped-variable block, setting its length field

to i, its offset field to j, and its variable decriptor to the descriptor
pointed to by dp.

alctable(dp) Allocate a table-header block, setting its default descriptor to the
descriptor pointed to by dp.

alctelem() Allocate a table-element block.
alctvtbl(dp1, dp2, i) Allocate a table-element trapped-variable block, setting its link

field to the descriptor pointed to by dp1, its entry field to the de-
scriptor pointed to by dp2, and its hash number field to i.

blkreq(i) Request i bytes of free space in the allocated block region.
strreq(i) Request i bytes of space in the allocated string region.

D.5.5 Operations on Structures

The following routines in runtime/rstruct.r perform operations on structures:

addmem(sp, ep, dp) Add the set-element block pointed to by ep to the set pointed to
by sp at the place pointed to by dp.
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cplist(dp1, dp2, i, j) Copy the sublist from i to j of the list referenced by the descriptor
pointed to by dp1, and place the result in the descriptor pointed to
by dp2.

memb(sp, dp, i, ip) Set the value pointed to by ip to 1 if the descriptor pointed to by
dp is a member of the set pointed to by dp is a member of the set
pointed to by sp using i as the hash number but to 0 otherwise.

D.5.6 Input and Output

The following routines in runtime/rsys.r perform input and output operations:

getstr(sbuf, i, fp) Read a line of at most i characters from the file specified by fp,
putting the result in sbuf, returning the number of characters read,
but returning -1 on an end of file.

putstr(fp, sbuf, i) Write i characters from sbuf on the file specified by fp.

D.5.7 Error Termination

The RTL construct runerr() can appear appear outside the C code of a body or an inline block,
reporting errors in parameters, or it may appear in a block of C code. Authors of new runtime
system code generally use runerr() and may invent new run-time error codes if needed. Very rarely
an internal error may warrant a syserr().

Interestingly, runerr() only works in top-level RTL functions and operators, not in underlying C
functions. If an underlying runtime system function has a problem that should result in a runtime
error, the C function will have to return an error code of some kind to the top-level RTL function
or operator that called it, asking it to produce a runtime error.

runerr(i, dp) Terminate execution with error message i showing the offending
value in the descriptor pointed to by dp (optional).

syserr(sbuf) Terminate execution with system error message sbuf.

D.5.8 Miscellaneous Operations

The following miscellaneous operations are in h/rmacros.h or runtime/rmisc.r:

deref(dp) Dereference the descriptor pointed to by dp.

hash(dp) Return a hash value for the descriptor pointed to by dp.
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outimage(fp, dp, i) Write an image for the value of the descriptor pointed to by dp on
the file to by fp, but not callling recursively if i is nonzero.

qtos(qp, sbuf) Convert the string represented by the qualifier pointed to by qp to
a null-terminated C-style string in sbuf.

D.5.9 Diagnostics

There are two routines in runtime/rmemmgt.r for producing diagnostic output. They are not in-
cluded in the runtime system unless you build it with DeBugIconx defined in your define.h.

descr(dp) Write a diagnostic diagram of the descriptor pointed to by dp to
standard error output.

blkdump Write a diagnostic diagram of the allocated block region to stan-
dard error output.

D.6 Debugging

Debugging a modification to Icon can be difficult unless the overall structure of the Icon system
is understood. It is especially important to understand the way Icon’s data is organized and how
storage management works. If an addition to Icon does not work properly, or if Icon itself no longer
functions correctly after a modification, it is generally advisable to think about the possible sources
of problems, instead of immediately resorting to a debugger.

Print statements are a crude but often effective means of locating the source of an error. When
adding diagnostic output use

fprintf(stderr, " . . . ", . . . );
instead of the corresponding printf. On some systems it may be useful to follow such calls by
fflush(stderr) to ensure that the diagnostic output appears as soon as it is produced.

Icon normally traps floating-point exception and illegal addressing (segmentation violations)
since these errors can result from source-language programming errors, such as division by real
zero and excessive recursion resulting in C stack overflow. For example, Icon normally produces
Error 302 ("C stack overflow") in case of a segmentation violation. This method of handling such an
error is appropriate if Icon itself is free of bugs, but it interferes with debugging in situations where
there are likely to be bugs in new code.

Assigning a value to the environment variable ICONCORE turns off the trapping of such errors.
In this case most systems produce meaningful diagnostic messages and a core dump in the case
of an exception. If ICONCORE has a value, a core dump is produced if an Icon program termi-
nates as a result of runerr or syserr. It is therefore good practice to set ICONCORE when making
modifications to Icon. For an extended debugging session, it may be convenient to set dodump in
runtime/init.r to 1.
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D.6.1 Extra help in DEVELOPMODE (Unicon)

When Unicon is built with DEVELOPMODE enabled there are some extra facilities that are pro-
vided to help with debugging.

D.6.1.1 Breakpoints in the Unicon program

It is difficult (when debugging the runtime system) to arrange for a breakpoint to occur at a particu-
lar location in the Unicon program. In DEVELOPMODE there is a new standard function, which is
callable from Unicon, named dbgbrk. Writing something like the code fragment below will cause
a debugger breakpoint at the desired moment – provided the debugger is instructed to place a break
point at the function called Zdbgbrk.

$ifdef _DEVMODE
if check_for_condition() then { dbgbrk() }

$endif

Note that use of dbgbrk should always be protected by $ifdef _DEVMODE because the function is
only defined when DEVELOPMODE is enabled. DEVELOPMODE used to be called DEVMODE
but it was renamed because it clashed with the use of the same identifier in the Windows UCRT
runtime library.

D.6.1.2 Identifying the current Unicon line

The position in the Unicon program can always be established by looking into the runtime system
with the debugger. A couple of functions make this process easier. The functions may be invoked
directly from gdb or lldb. Both functions are parameterless.

dbgUFL Print the current Unicon file and line number.

dbgUTrace Print a Unicon stack trace.

D.6.2 Heap Verification (Unicon)

Icon may be built with optional extra heap checking code that is enabled by defining DebugHeap
in h/define.h or by giving the –enable-verifyheap argument to configure. The extra checking is
defined in h/rmacros.h and may be summarized by
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/* Debug Heap macros. These add runtime checks to catch (most)
* illegal block references resulting from untended pointers.
* Use during new code development, when gdb and valgrind fail to help.
*/

If the use of these macros fails to pinpoint a suspected heap problem, Unicon has an extra level
of checking that is enabled by defining VerifyHeap in h/define.h. Most of the extra verification
is performed inside the collect function, just before and just after garbage collection takes place,
although some more limited checks are also made during the normal running of the program.

The philosophy of the heap verification code is to “crash early”, as soon as a problem is de-
tected, in the hope that the sooner the debugger is involved after a problem is found, the easier it
will be to establish the cause. In the worst case, this “crash early” approach can lead to the Unicon
compilation system itself crashing (which makes it a bit harder to fix any problems). To mitigate
this, the heap verification code is controlled by an environment variable VRFY. The variable is bit-
significant, and the bits control which verifications are undertaken. A value of zero means that no
verifications are made at all. In general, if the bit corresponding to the typecode of a structure is
set, that block type will be verified (e.g. if bit (1 << T_Table) is set then table header blocks will be
verified). The bit test is made on each verification so, in principle, the verification flags could be
changed during the execution of the program.

The verifier contains a circular log buffer where messages placed by the verification code are
stored. The buffer may be displayed in the debugger by calling the routine vrfyPrintLog. If VRFY
is set to -1, all checks are enabled, which can lead to a lot of logging output. It may be better to
set VRFY to -2 in some cases: this suppresses the most common log message, which can overwrite
useful evidence in the (limited capacity) circular log.

The verification checks are made by making a pass over the current heap in a similar fashion
to the location phase of garbage collection (see section 12.3.2). Each block between blkbase and
blkfree is examined. In the checking that takes place before garbage collection, it is unknown
whether the block being checked is live or whether it will be collected. Thus pre-GC checking must
necessarily be more conservative because it cannot be guaranteed that other blocks pointed to by
the present one contain valid information – they may have already been reused. After the collection
has been made it is guaranteed that all the blocks in the current heap are live, or potentially so, and
therefore a more extensive set of checks may be performed. For example, after GC it is possible
to verify the entire structure of a table – all the buckets point to valid slots; all the slots point to
valid table elements; there are no duplicate elements etc.: before GC, none of these checks is safe
because the components of the table (and even the table header block itself) may not be valid.

The checking enabled by DebugHeap and VerifyHeap are independent: each may be active
without the other although, in practice, it is likely they will be enabled together.
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D.7 Adding new types to the compiler

Editorial Note: This section is derived from Appendix F of the RTL reference docu-
ment [.ipd261.]. The RTL manual is reproduced here as appendix G.

This section describes how to add new types to Icon. It deals with simple types, aggregate types
whose values contain other Icon values, and keywords that are variables. These are the kinds of
types that are most likely to be added to the language. Executable types such as procedures and
co-expressions are beyond the scope of this section, as are types that require special representations
and variable types that have special dereferencing semantics.

D.7.1 The implementation of Icon Types (reprise)

As discussed in part 1 and Appendix A of this compendium, an Icon value is implemented as a two-
word descriptor containing type information and value information. The first word of a descriptor
is the d-word. For the types discussed here, the d-word contains a unique code that identifies the
type. The second word of the descriptor is the v-word; it contains the actual value or a reference
to the value. Actual values that are too large to fit in one word are usually put in the block region.
This region is controlled by a storage management system that includes a garbage collector. The
garbage collector is driven by information in arrays indexed using the type codes associated with
the blocks. The block region contains values for both simple and aggregate types.

There are several other parts of the run-time system besides the garbage collector that need
information about Icon types. Some are Icon operations such as the type() function, while others
are automatically invoked features such as error trace back. These are described in more detail
below. Types, of course, typically have operations associated with them that create and use values
of the type.

D.7.2 The Type Specification System

Icon types are used in several places in RTL and new types must be added to this language. These
uses include type checking constructs, return/suspend statements, and abstract type computations.
In addition, the Icon compiler needs information about types in order to perform type inferencing.
These requirements are satisfied with a type specification system.

This system is a simple declarative language for naming types and describing some of their
properties. Information from the type specification system is incorporated in rtt and in iconc when
they are built.

All types specified by the system may be used in the RTL is and type_case constructs. They
may also be used in abstract type computations. Aggregate types may be used in a new type
expression in an abstract type computation. A type specification may optionally indicate that RTL
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supports a special form of return/suspend statement that constructs a return value, in the form of a
full descriptor, from a C value for the v-word of the descriptor.

Type specifications are in the file common/typespec.txt. Comments in the file start with # and
continue to the end of the line.

This file is translated into a C header file by the program typespec. This is not part of the normal
Icon build process; entries at the end of common/Makefile must be uncommented if typespec.txt is
updated.

A type definition in the specification system has the form:

type-def ::= identifier opt-abrv : kind opt-return

where identifier is the name of the type and opt-abrv is an optional abbreviation for the type name.
The abbreviation has the form:

opt-abrv ::= nil |
{ identifier }

The abbreviation is used in tracing type inferencing and other places where a compact notation is
desired. If no abbreviation is given, the full type name is used.

There are three kinds of types: simple, aggregate, and variable. Their syntax and usage are
described in separate sections below. opt-return indicates optional RTL return/suspend support for
the type. The four types of v-words supported by this construct are introduced below as needed. A
complete grammar for the specification language is given near the end of this appendix.

D.7.3 Simple Value Types

Types with a kind clause of simple are simple in the sense that values of the type do not have com-
ponents that contain other Icon values. These types may otherwise have sophisticated semantics.

There are three ways to implement the values of a type: encode them as C integers (these are
guaranteed to be at least 32 bits long), implement them as blocks in the block region, or implement
them in storage allocated using malloc() (in theory values can also be put in the string region, but it
is only well suited for Icon strings; descriptors pointing into this region must have a special form
— described in A.1.1). The choice of implementation determines the type of C value stored in the
v-word of the descriptor representing the Icon value.

The d-word of a descriptor for one of these types contains a fixed code. It consists of a small in-
teger type code along with flags describing characteristics of the descriptor. The necessary changes
to rmacros.h have been covered earlier in section D.3.1.

Three of the opt-return type specification clauses are useful for implementing value types (the
fourth is used for variable types; see below). These clauses add return/suspend statements to RTL
of the form
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return type-name ( expr )
suspend type-name ( expr )

type-name is the identifier naming the type. It determines the D_ constant used for the d-word
of the operation’s result descriptor. expr is a C expression whose value is placed in the v-word
of the result. The particular opt-return clause chosen determines how the C value is stored in the
v-word. The clauses are

return C_integer indicates that the value is cast to a C integer; see the definition of
word in h/typedefs.h for the exact C type used.

return block_pointer indicates that the value is cast to (union block *); this is usually
used for pointers to blocks in the block region.

return char_pointer indicates that the value is cast to (char *). Note, only descriptors
of a special form may point into the string region; the storage used
with return char_pointer must reside elsewhere.

As an example, the type specification for the cset type is

cset{c}: simple
return block_pointer

Suppose a variable cp within an Icon operation written in RTL points to a cset block. Then the
statement

return cset(cp);
constructs a result descriptor for the cset and returns it.

For a type with an associated block, a declaration for the block structure must be added to
h/rstructs.h. By convention, the structure name is created by prepending b_ to the type name. The
first word of a block must contain its T_ type code. If different instances of the block may vary in
size, the second word of the block must contain this size in bytes. The structure name of the new
block must be added to the union block declaration in h/rstructs.h. An allocation routine for the
block must be added to runtime/ralc.r. The macros AlcFixBlk() and AlcVarBlk() are useful in such
routines; see other allocation routines for guidelines.

There are five arrays in runtime/rmemmgt.r that must be updated for all types (the details have
been covered in section D.3.3).

Storage for the values of a type usually should be allocated in the block region. However, for in-
terfaces to packages written in C, it may be necessary to use storage that is not relocated by garbage
collection. While it is possible to place types allocated with malloc() under control of garbage col-
lection, this is complicated and beyond the scope of this appendix. See the implementation of
co-expressions for an example of how this can be done. Short of modifying the garbage collector
to handle a new type’s allocated storage, the best practice for any storage allocated with malloc() is
to provide an Icon function, along the lines of close(), that explicitly frees storage associated with
a value when the program is finished using it.
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The necessary changes to built-in functions and support routines have been covered earlier in
section D.3.4.

At the end of this appendix is a check list of files that must be updated when a type is added to
Icon.

D.7.4 Aggregate Types

Aggregate types have values with components that are other Icon values. The aggregate type spec-
ification provides more sophisticated RTL abstract type computations for the type. These in turn
allow iconc to produce code that is better optimized.

For interpreter-only implementations, abstract type computations are not used and are optional
in RTL code; the simple type specification may be used in that case. However, the discussion later
in this section on block layout and on the storage management arrays still applies.

The kind clause of an aggregate type specification establishes and names abstract components
for the type. The clause is of the form

kind ::= aggregate ( component, . . . )

component ::= identifier |
var identifier opt-abrv

Note, the opt-return clauses discussed in the previous section may be also used with aggregate
types.

The aggregate specification can be thought of as establishing a sort of “abstract type record”
whose fields, the abstract components, summarize the type information of the actual components
of values in the type. Most types are given one abstract component. For example, the set type has
the specification

set{S}: aggregate(set_elem)
return block_pointer

where set_elem represents all the elements of a set.
Abstract components can be accessed using dot notation, and the new abstract type computation

can be used to establish a new subtype of the type (subtypes only exist internally in the compiler
and have no existence at the Icon language level). A subtype can be returned by the operation
and has its own component types independent of subtypes created elsewhere. The abstract type
computation for Icon set intersection, the ** operator, uses both dot notation and a new expression.
It performs intersection in the abstract type realm. x and y are the parameters of the operation and
may contain different subtypes of the set type:

return new set(store[type(x).set_elem] ** store[type(y).set_elem])
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(Note that the components can be thought of as references to information contained in a type store
— thus the indexing notation.)

Components that represent Icon variables are preceded by var and may be given abbreviations
for use in tracing type inferencing. For example, the list type has the specification

list{L}: aggregate(var lst_elem{LE})
return block_pointer

These components may be returned from operations and represent the component as a variable.
For example, the abstract type computation for element generation operator when applied to a list
is

return type(dx).lst_elem

where dx is the parameter of the operation. When a value rather than a variable is returned, the
component must be “dereferenced” by indexing into the store, as in the abstract type computations
of get():

return store[type(x).lst_elem]

Non-variable components must always be dereferenced.
For types, such as tables, that contain Icon values serving different purposes, it may be effective

to establish several abstract components.
Aggregate types are implemented using blocks that contain descriptors, and they may be im-

plemented using several kinds of blocks, with some blocks having pointers to others. When there
are multiple blocks, there is always a header block that uses the T_ code of the type. Other blocks
are given internal type codes; these codes must be added to h/rmacros.h and entries must be made
in the storage management arrays.

Any descriptors in a block must be at the end. The type’s entry in the firstd array is the location
of the first descriptor. Any block pointers in the block must be contiguous. The type’s entry in
the firstp array is the location of the first pointer and its entry in the ptrno array is the number of
pointers.

D.7.5 Keyword Variable Types

Keyword variable types have a type specification with a kind clause of the form

kind ::= variable var-type-spec

var-type-spec ::= initially type |
always type

type ::= type-name |
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type ++ type-name

type-name ::= identifier

The compiler must be able to infer the types of values stored in a keyword variable. The initially
option causes the keyword variable type to be treated as a set of global variables, each initialized
to the given type specified by the type clause. The always option indicates that the keyword always
contains values of the given type and the compiler does no actual inference on it. type may be the
union of several types; this indicates that the type is uncertain and may be any of the ones specified.
A special type-name, any_value, indicates complete uncertainty.
The clause

always any-value
is a correct, although entirely imprecise, description of any keyword variable.

This appendix assumes that keyword variables are implemented by global descriptors (though
other techniques are possible). The opt-return clause of the form

return descriptor_pointer
is useful for implementing keyword variables. The v-word of a result descriptor from a correspond-
ing return/suspend expression is of type struct descrip *.

Some of the same files must be updated for variable types as for value types. Type codes must
be added to h/rmacros.h. The D_ code must have the F_Var flag set, for example:

#define D_Kywdint (T_Kywdint | D_Typecode | F_Ptr | F_Var)
The storage management tables and the outimage() routine also must be updated.

Other updates are unique to variable types. The global descriptor must be established. run-
time/data.r contains its declaration. icon_init() in runtime/init.r initializes the descriptor, and
h/rexterns.h contains an extern for it. Dereferencing must be updated; it is performed by deref() in
runtime/cnv.r. Assignment must be updated; it is handled by the macro GeneralAsgn() in run-
time/oasgn.r. The name() function is updated by changing the support routine get_name() in
runtime/rdebug.r. The variable() function is updated by changing the support routine getvar() in
runtime/rmisc.r.

The keyword itself goes in runtime/keyword.r. For example, &random is of type kywdint and is
implemented by the descriptor kywd_ran; its definition is

keyword{1} random
abstract {

return kywdint
}
inline {

return kywdint(&kywd_ran);
}

end
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For the interpreter, the keyword name must be added to icont/key_text.c. These names are in alpha-
betical order. Unicon generates the keyword names automatically from runtime/keyword.r using
the mkkwd program — icont/key_text.c no longer exists.

If the descriptor may contain a value under control of garbage collection, the support routine
collect() in runtime/rmemmgt.r must be updated. postqual() preserves references to the string re-
gion; the macro Qual() is used to check for such references. markblock() preserves references to
blocks; the macro Pointer() is used to check for such references.
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D.7.6 The Complete Grammar for the Type Specification System

type-def ::= identifier opt-abrv : kind opt-return

kind ::= simple |
aggregate ( component, . . . ) |
variable var-type-spec

component ::= identifier |
var identifier opt-abrv

var-type-spec ::= initially type |
always type

type ::= type-name |
type ++ type-name

type-name ::= identifier

opt-abrv ::= nil |
{ identifier }

opt-return ::= nil |
return block_pointer |
return descriptor_pointer |
return char_pointer |
return C_integer
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D.8 A check list for adding types (on one page for easy photocopying)

All Types

� common/typespec.txt – add type specification
� common/Makefile – uncomment entries near the end of the file
� h/rmacros.h – add T_Type macro
� h/rmacros.h – add D_Type macro
� runtime/rmemmgt.r – bsizes table
� runtime/rmemmgt.r – firstd table
� runtime/rmemmgt.r – firstp table
� runtime/rmemmgt.r – ptrno table
� runtime/rmemmgt.r – blkname table
� runtime/rmisc.r – update outimage()

All Value Types

� runtime/fmisc.r – update copy()
� runtime/fmisc.r – update type()
� runtime/rcomp.r – update anycmp()
� runtime/rcomp.r – update order()
� runtime/rcomp.r – update equiv()
� runtime/rmisc.r – update getimage()

Types Implemented In The Block Region

� h/rstructs.h – add declaration for the block structure
� h/rstructs.h – update the union block declaration
� runtime/ralc.r – add an allocation routine

Types With Sizes

� runtime/omisc.r – update size operator

All Keyword Variable Types

� h/rexterns.h – extern for keyword descriptor
� runtime/cnv.r – update deref()
� runtime/data.r – declaration for keyword descriptor
� runtime/init.r – initialize keyword descriptor
� runtime/keyword.r – add keyword declaration
� runtime/oasgn.r – update GeneralAsgn() macro
� runtime/rdebug.r – update get_name()
� runtime/rmisc.r – update getvar()

Keyword Variables That Must Be Garbage Collected

� runtime/rmemmgt.r – update collect()
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Appendix F

Solutions to Selected Exercises

2.2 The expression
write("hello" | "howdy")

just writes hello; there is no context to cause the second argument of the alternation to be
produced.

2.3 The expression
| (1 to 3) > 10

is an evaluation "black hole." The left argument produces 1, 2, 3, 1, 2, 3, 1, 2, 3, ... indefi-
nitely, since the comparison always fails.

3.1 The difference in execution time between interpretation and the execution of compiled code
is comparatively small, since most of the time in execution is spent in subroutines that are
called in either case.

3.3 The lexical analyzer inserts a semicolon between the lines

s1 := s2
|| s3

because an identifier is legal at the end of an expression, and the unary operator for repeated
alternation is legal at the beginning of an expression. Thus, the second line consists of two
applications of repeated alternation to s3.

4.6 Type checking is a byproduct of conversion. If conversion were not automatic, type checking
would be simple, but the conversion routines would still be needed for explicit type con-
version. Without implicit type conversion, the programmer would have to perform explicit
conversions, as in

while sum +:= numeric(read())
However, since both read and numeric can fail, a more complicated construction would be
advisable:

619
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while x := read() do
sum +:= numeric(x) | stop("nonnumeric data")

This illustrates why the failure of an implicit conversion is an error.

4.7 A test is necessary to distinguish between qualifiers and other descriptors, regardless of which
has the flags. However, if qualifiers had flags, it would be necessary to mask them out in order
to extract their lengths. Since masking is needed anyway to extract the type codes of other
descriptors, it is more efficient to relegate the flags to them.

4.9 The basic approach to designing one-word descriptors is to have them point to intermediate
data that otherwise would be contained in two-word descriptors. In the simplest form, one-
word descriptors would point to two-word blocks corresponding to two-word descriptors
(Hanson 1980).

5.1 If Icon is implemented on a computer whose collating sequence is different from ASCII, such
as EBCDIC, it still uses the ASCII collating sequence for comparison and sorting. Conse-
quently, these operations may produce results that are different from ones that are expected in
an EBCDIC environment. If the native character set of a computer is smaller than 256, there
may be problems implementing Icon, since the size of a C char may be less than expected in
some routines.

5.4 Even if a newly created string exists in string space, the code to find it would be complex and
the time required probably would outweigh any advantages of avoiding duplicate allocation.
Furthermore, the new string must be constructed somewhere first in order to know what to
look for. This construction often is most conveniently performed in allocated string space, so
most of the work is done already.

5.7 If the context in which a subscripting expression is used can be determined by the translator,
different virtual machine instructions could be generated for the different contexts. If the
context is dereferencing, a virtual machine instruction for producing a substring could be
used to avoid the construction of a substring trapped variable and the allocation of space that
might have to be reclaimed during garbage collection. Similarly, if the context is assignment,
virtual machine instructions for the appropriate concatenation could be produced.

5.10 The following procedure illustrates the usefulness of polymorphic subscripting:

procedure shuffle(x)
every !x := ?x
return x

end
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This procedure can shuffle strings, lists, and records. Note that subscripting is implicit in the
element-generation and random-selection operations. The same principle applies to explicit
subscripting, however.

6.2 An empty list consists of a list-header block and one list-element block. For convenience in
diagramming, the list-element blocks in Chapter 6 have space for only four elements, but the
normal number is eight. Therefore, on a computer with 32-bit words, a list-element block
occupies 100 bytes, while a list-header block occupies 24 bytes. Thus, on a computer with
32-bit words, an empty list occupies 124 bytes in all. On a computer with 16-bit words, the
empty list is half this big. This may seem like a lot of space for "nothing," but an empty list
usually is created so that elements can be added to it, in which case the overhead becomes
progressively less significant.

6.4 Just because a list element is removed from a list by a stack or queue operation does not mean
that the element is inaccessible. Consider the expression

process(a[1], pop(a))

Since the arguments are not dereferenced until both of them are evaluated, it might prove
surprising if the value of a[1] were changed by the pop. Although such situations are unlikely
in practice, it is important that list accesses behave coherently and consistently. One way to
view the handling of this situation is that the pop does not remove an element but only makes
it unavailable for subsequent access.

6.5 As indicated by the preceding solution, references to list elements that are removed by stack
or queue operations may remain. It is easy to construct examples in which there are such
references to unlinked list-element blocks.

7.3 An empty set consists of just a set-header block. There are two words for the title and size.
A computer with 16-bit words has thirteen 4-byte slots, while a computer with 32-bit words
has thirty-seven 8-byte slots. Thus, on a computer with 16-bit words, an empty set occupies
56 bytes, while on a computer with 32-bit words, an empty set occupies 304 bytes. Each
member added to a set occupies 12 bytes on a computer with 16-bit words and 24 bytes on a
computer with 32-bit words.

7.8 It is necessary to access a table to determine whether an element is already in it. Since the
table contains the default value, it is readily available when it is needed. Because the default
value may not be needed, it is not worth the trouble always to put it in table-element trapped-
variable blocks.

7.12 The default value of a table is constant and could be used for computing its hash number.



622

7.13 If hashing is based on an attribute of a value that can change, two hash computations on that
value may produce different results. If this happens, the value appears to be different in the
two cases. Thus, the same value might be inserted in a set twice, an element that is in a table
might not be found, and so on.

8.1 The str instruction pushes a descriptor on the interpreter stack. The d-word of this descriptor
is the string length, and the v-word is a pointer to its location. Since the interpreter stack
grows toward increasing memory addresses, it is natural and convenient to push the v-word
first and to have its value as the first operand of the str instruction.

8.3 The two expressions

a[?i] := a[?i] + 1

and

a[?i] +:= 1

generally produce different results.

8.4 A new operator requires new syntax, which must be handled in the translator. Since each
operator has its own virtual machine instruction, a new instruction must be added for the new
operator. The translator, linker, and run-time system all must handle this new virtual machine
instruction. In the run-time system, the code for this instruction must be added to the main
switch statement in the interpreter, with an appropriate call to a C routine to implement the
operation.

9.2 Suspension of functions and operations (but not procedures) increases the interpreter level.
This occurs both in nested generators and generators in mutual evaluation. Thus, if expri is a
function or operator that suspends, the interpreter level is increased by its evaluation in both

expr2(expr1)

and

expr1 & expr2

9.5 Exercise 2.3 contains an example of a "black hole" as a result of repeated alternation.

9.7 If the result of expr1 in

every expr1 do expr2

is not popped, the interpreter stack builds up for every value produced by expr1. While these
descriptors are removed when the loop terminates, interpreter stack overflow would result in
expressions like

every 1 to 100000 do expr2
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9.8 The expressions

every expr1

and

expr1 & &fail

are equivalent unless expr1 contains a break or next expression.

10.1 If a procedure or function call contains an extra argument that fails, the call is not performed
(more accurately, the previous argument is resumed).

10.3 If a variable whose value is on the interpreter stack is returned from a procedure, the variable
must be dereferenced, since the value on the stack may be overwritten. Thus, arguments
and dynamic local identifiers are dereferenced on procedure return. Static local identifiers
are not dereferenced, since they are not on the stack. There is a good argument why static
local identifiers should be dereferenced, since local identifiers are expected to be accessible
only within the procedures in which they are declared. Suspension also dereferences vari-
ables whose values are on the stack. These values will not be overwritten, however, since the
portion of the stack containing these values is not removed until the surrounding expression
frame is removed, at which time the variables in it are no longer accessible. The rationale
for dereferencing on suspension is that there should be no difference, at the source-language
call, between a procedure that returns and a procedure that suspends. Furthermore, if deref-
erencing on suspension were not done, the arguments and local identifiers of the suspending
procedure could be modified by the procedure that calls it. This would violate the semantic
concept of "local," although, as mentioned previously, static local identifiers are not derefer-
enced. This may be viewed as a bug.

10.4 The interpreter stack grows upward, regardless of the architecture of the computer on which
Icon is implemented. On a computer with an upward-growing C stack, the C stack base is
in the middle of the co-expression block, instead of at its end. There is an advantage, in
co-expressions, to having a downward-growing C stack: the interpreter and C stacks grow
toward each other, sharing space, and run out of space only when they collide. For an upward-
growing C stack, either the interpreter stack or the C stack may run out of space, even if there
is unused space in the other.

12.1 Having the type code in the d-word of a descriptor allows its type to be determined without a
level of indirection to the block title through its v-word.

12.2 Answer removed: the question no longer applies.

12.3 The values of global and static identifiers are in the icode region, so any assignment to one
of them changes data in the icode region.
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12.4 Global and static identifiers could be in a single array in the icode region. It is simply more
convenient to handle them separately in the translator and linker.

12.5 The names of global identifiers are needed for the display function and for the string invoca-
tion of functions as described in Exercise 10.2.

12.6 The names of static identifiers are in their procedure blocks.

12.17 The maximum type code is a small integer. Therefore, it is only necessary that the allocated
block region be at an address larger than this value. This happens automatically because of
the way the code for the run-time system is arranged, although it would be trivially easy to
force.

12.19 If there were more than one pointer on quallist to the same qualifier, the v-word of that quali-
fier would be relocated more than once, with an erroneous result. Such an error would show
up when the qualifier was used in subsequent program execution after garbage collection.

12.21 Answer removed: the question no longer applies.

12.26 Recursion in markblock occurs when a block contains a pointer to another block. Thus,
pointer chains cause recursion of corresponding depth. The following program builds a
linked list whose length is the number of lines in the input file:

record lines(value, nextl)

procedure main()
head := lines()
current := head
while current.value := read() do {

current.nextl := lines()
current := current.nextl

}
...

end

In the case of a garbage collection, the depth of recursion in markblock is the length of the
linked list.
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12.31 An excessively large predictive need request may trigger a garbage collection unnecessarily
or possibly cause error termination if there is not enough memory, although this is unlikely
unless the request is enormous. If the request is satisfied, execution continues normally. If a
predictive need request is less than the amount subsequently allocated and there is not enough
space in the region to satisfy the allocation request, the allocation routine terminates program
execution with a message indicating that there is an error in the implementation of Icon.

12.32 As indicated in the solution to Exercise 6.5, an unlinked list-element block may still be refer-
enced by a variable. As long as this is the case, the list-element block cannot be reclaimed by
garbage collection. In general, as long as there is a pointer to a block that is reachable from
the basis, the block cannot be reclaimed.

12.33 A variable could point to the head of the block, with an offset referred to the location of
the corresponding value. The advantage of having a variable point directly to its value is
efficiency during expression evaluation. Access to variables in blocks is presumably more
frequent during expression evaluation than during garbage collection. There can be at most
one access to such a variable during a garbage collection, while the variable may be accessed
repeatedly during expression evaluation. Furthermore, many programs use such variables
frequently but never require garbage collection.

12.38 In the case of a type, such as real, for which all blocks are the same size, a separate allocation
region can be efficiently managed by a free-list mechanism. No relocation is needed in such
a region, and since all blocks are of the same size, there is no problem with fragmentation.
Having many allocation regions complicates the storage-management system, of course. The
implementation of an early version of Icon employed several regions in which the space for
freed blocks was reused (Hanson 1980).

12.39 It is not possible to determine, in general, if storage is needed only temporarily or if it must
be retained for an arbitrarily long time. For example, in

while process(read)

the retention of storage for input strings depends entirely on what process does. If it just
writes out its argument, as shown in the exercise, storage for the strings produced by read
would not have to be allocated. If, on the other hand, it pushes its argument on a list, the
strings must be allocated. Since allocation is fast and garbage collection has little work to
do for space that is not accessible, storage throughput has a comparatively small impact on
performance.

13.2 On computers with 16-bit words, tests for the two types of integers must be made in all
situations where type checking and conversion are performed. Furthermore, all computations
that may produce a source-language integer that requires more than 16 bits must provide for
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the creation of long-integer blocks. Since integers occur in many contexts, a substantial
amount of code is required to handle the two types of integers.

13.4 The value of MaxCvtLen must be sufficient to handle a string whose length is the size of the
character set. Thus, if Icon had 512 different characters, MaxCvtLen would have to be 512.
Even if the number of different characters were small, it is unlikely that some other type of
conversion, such as real-to-string, would dominate.

13.14 Answer removed: the question no longer applies.



Appendix G

The RTL Run-Time Language

This appendix contains a description of the language used to implement the run-time operations
of the Icon compiler system. Chapter 5 provides a description of the design goals of the imple-
mentation language and an introduction to it. Some of the design decisions for the language were
motivated by optimizations planned for the future, such as constant folding of csets. The use of
these features is presented as if the optimizations were implemented; this insures that the opti-
mizations will be supported by the run-time system when they are implemented. This appendix is
adapted from the reference manual for the language [Walker94].

The translator for the implementation language is the program rtt. An rtt input file may contain
operation definitions written in the implementation language, along with C definitions and decla-
rations. Rtt has a built-in C preprocessor based on the ANSI C Standard, but with extensions to
support multi-line macros with embedded preprocessor directives [.ipd65.]. Rtt prepends a standard
include file, grttin.h, on the front of every implementation language file it translates.

The first part of this appendix describes the operation definitions. C language documentation
should be consulted for ordinary C grammar. The extensions to ordinary C grammar are described
in the latter part of the appendix.

The grammar for the implementation language is presented in extended BNF notation. Terminal
symbols are set in Helvetica. Non-terminals and meta-symbols are set in Times-Italic. In addition
to the usual meta-symbols, ::= for ``is defined as’’ and | for ``alternatives’’, brackets around a
sequence of symbols indicates that the sequence is optional, braces around a sequence of symbols
followed by an asterisk indicates that the sequence may be repeated zero or more times, and braces
followed by a plus indicates that the enclosed sequence may be repeated one or more times.

G.1 Operation Documentation

An operation definition can be preceded by an optional description in the form of a C string literal.
documented-definition ::= [ C-string-literal ] operation-definition

627
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The use of a C string allows an implementation file to be run through the C preprocessor without
altering the description. The preprocessor concatenates adjacent string literals, allowing a multi-
line description to be written using multiple strings. Alternatively, a multi-line description can be
written using `’ for line continuation. This description is stored in the operation data base where
it can be extracted by documentation generation programs. These documentation generators pro-
duce formatted documentation for Icon programmers and for C programmers maintaining the Icon
implementation. The documentation generators are responsible for inserting newline characters at
reasonable points when printing the description.

G.2 Types of Operations

Rtt can be used to define the built-in functions, operators, and keywords of the Icon language. (Note
that there are some Icon constructs that fall outside this implementation specification system. These
include control structures such as string scanning and limitation, along with record constructors and
field references.)

operation-definition ::=
function result-seq identifier ( [ param-list ] ) [ declare ] actions end |
operator result-seq op identifier ( [ param-list ] ) [ declare ] actions end |
keyword result-seq identifier actions end |
keyword result-seq identifier const key-const end

result-seq ::= { length , length [ + ] } |
{ length [ + ] } |
{ }

length ::= integer | *
result-seq indicates the minimum and maximum length of the result sequence of an operation

(the operation is treated as if it is used in a context where it produces all of its results). For example,
addition always produces one result so its result-seq is {1, 1}. If the minimum and maximum are
the same, only one number need be given, so the result-seq for addition can be coded as {1}. A
conditional operation can produce either no results (that is, it can fail) or it can produce one result,
so its result-seq is {0, 1}. A length of ∗ indicates unbounded, so the result-seq of ! is indicated
by {0, ∗}. An ∗ in the lower bound means the same thing as 0, so {0, ∗} can be written as {∗,∗},
which simplifies to {∗}. A result-seq of {} indicates no result sequence. This is not the same as a
zero-length result sequence, {0}; an operation with no result sequence does not even fail. exit is an
example of such an operation.

A + following the length(s) in a result-seq indicates that the operation can be resumed to per-
form some side effect after producing its last result. All existing examples of such operations
produce at most one result, performing a side effect in the process. The side effect on resumption
is simply an undoing of the original side effect. An example of this is tab, which changes &pos as
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the side effect.
For functions and keywords, identifier is the name by which the operation is known within the

Icon language (for keywords, identifier does not include the &). New functions and keywords can
be added to the language by simply translating implementations for them. For operations, op is
(usually) the symbol by which the operation is known within the Icon language and identifier is a
descriptive name. It is possible to have more than one operation with the same op as long as they
have different identifiers and take a different number of operands. In addition to translating the
implementation for an operator, adding a new operator requires updating iconc’s lexical analyzer
and parser to know about the symbol (in reality, an operator definition may be used for operations
with non-operator syntax, in which case any syntax may be used; iconc’s code generator identifies
the operation by the type of node put in the parse tree by a parser action). In all cases, the identifier
is used to construct the name(s) of the C function(s) which implement the operation.

A param-list is a comma separated list of parameter declarations. Some operations, such as
the write function, take a variable number of arguments. This is indicated by appending a pair of
brackets enclosing an identifier to the last parameter declaration. This last parameter is then an
array containing the tail of the argument list, that is, those arguments not taken up by the preceding
parameters. The identifier in brackets represents the length of the tail and has a type of C integer.

param-list ::= param { , param } [ [ identifier ] ]
Most operations need their arguments dereferenced. However, some operations, such as as-

signment, need undereferenced arguments and a few need both dereferenced and undereferenced
versions of an argument. There are forms of parameter declarations to match each of these needs.

param ::= identifier |
underef identifier |
underef identifier -> identifier

A simple identifier indicates a dereferenced parameter. underef indicates an undereferenced
parameter. In the third form of parameter declaration, the first identifier represents the undeferenced
form of the argument and the second identifier represents the dereferenced form. This third form of
declaration may not be used with the variable part of an argument list. These identifiers are of type
descriptor. Descriptors are implemented as C structs. See Chapter 4 for a detailed explanation of
descriptors. Examples of operation headers:

detab(s,i,...) - replace tabs with spaces, with stops at columns indicated.
function{1} detab(s, i[n])

actions
end

x <-> y -swap values of x and y.
Reverses swap if resumed.
operator{0,1+} <-> rswap(underef x -> dx, underef y -> dy)

declare
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actions
end

&fail -just fail
keyword{0} fail

actions
end

G.3 Declare Clause

Some operations need C declarations that are common to several actions. These can be declared
within the declare clause.

declare ::= declare { C declarations }
These may include tended declarations, which are explained below in the section on extensions

to C. If a declaration can be made local to a block of embedded C code, it is usually better to put it
there than in a declare clause. This is explained below in the discussion of the body action.

Constant Keywords
Any keyword can be implemented using general actions. However, for constant keywords,

iconc can sometimes produce more efficient code if it treats the keyword as a literal constant.
Therefore, a special declaration is available for declaring keywords that can be represented as Icon
literals. The constant is introduced with the word const and can be one of four literal types.

key-const ::= string-literal | cset-literal | integer-literal | real-literal
When using this mechanism, it is important to be aware of the fact that rtt tokenizes these

literals as C literals, not as Icon literals. The contents of string literals and character literals (used to
represent cset literals) are not interpreted by rtt except for certain situations in string concatenation
(see [.ipd65.]). They are simply stored, as is, in the data base. This means that literals with escape
sequences can be used even when C and Icon would give them different interpretations. However,
C does not recognize control escapes, so ’ˆ’’, which is a valid Icon literal, will result in an error
message from rtt, because the second quote ends the literal, leaving the third quote dangling. Only
decimal integer literals are allowed.

G.4 Actions

All operations other than constant keywords are implemented with general actions.
Actions fall into four categories: type checking and conversions, detail code expressed in ex-

tended C, abstract type computations, and error reporting.
actions ::= { action }*
action ::= checking-conversions |
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detail-code |
abstract { type-computations } |
runerr( msg_number [ , descriptor ] ) [ ; ]
{ actions }

G.4.1 Type Checking and Conversions

The type checking and conversions are
checking-conversions ::= if type-check then action |

if type-check then action else action |
type_case descriptor of { { type-select }+ } |
len_case identifier of { { integer : action }+ default : action }

type-select ::= { type-name : }+ action |
default : action

These actions specify run-time operations. These operations could be performed in C, but spec-
ifying them in the implementation language gives the compiler information it can use to generate
better code.

The if actions use the result of a type-check expression to select an action. The type_case action
selects an action based on the type of a descriptor. If a type_case action contains a default clause, it
must be last. type-select clauses must be mutually exclusive in their selection. The len_case action
selects an action based on the length of the variable part of the argument list of the operation. The
identifier in this action must be the one representing that length.

A type-check can succeed or fail. It is either an assertion of the type of a descriptor, a conversion
of the type of a descriptor, or a logical expression involving type-checks. Only limited forms of
logical expressions are supported.

type-check ::= simple-check { && simple-check }* |
! simple-check

simple-check ::= is: type-name ( descriptor ) |
cnv: dest-type ( source [ , destination ] ) |
def: dest-type ( source , value [ , destination ] )

dest-type ::= cset |
integer |
real |
string |
C_integer |
C_double |
C_string |



632

(exact)integer |
(exact)C_integer |
tmp_string |
tmp_cset

The is check succeeds if the value of the descriptor is in the type indicated by type-name.
Conversions indicated by cnv are the conversions between the Icon types of cset, integer, real, and
string. Conversions indicated by def are the same conversions with a default value to be used if the
original value is null.

dest-type is the type to which to a value is to be converted, if possible. cset, integer, real,
and string constitute a subset of icon-type which is in turn a subset of type-name (see below).
C_integer, C_string, and C_double are conversions to internal C types that are easier to manipulate
than descriptors. Each of these types corresponds to an Icon type. A conversion to an internal
C type succeeds for the same values that a conversion to the corresponding Icon type succeeds.
C_integer represents the C integer type used for integer values in the particular Icon implementation
being compiled (typically, a 32-bit integer type). C-double represents the C double type. C-string
represents a pointer to a null-terminated C character array. However, see below for a discussion of
the destination for conversion to C_string. (exact) before integer or C_integer disallows conversions
from reals or strings representing reals, that is, the conversion fails if the value being converted
represents a real value.

Conversion to tmp_string is the same as conversion to string (the result is a descriptor), except
that the string is only guaranteed to exist for the lifetime of the operation (the lifetime of a sus-
pended operation extends until it can no longer be resumed). Conversion to tmp_string is generally
less expensive than conversion to string and is never more expensive, but the resulting string must
not be exported from the operation. tmp_cset is analogous to tmp_string.

The source of the conversion is the descriptor whose value is to be converted. If no destination
is specified, the conversion is done ``in-place’’. However, it may not actually be possible to do
an argument conversion in the argument’s original location, so the argument may be copied to
another location as part of the conversion. Within the scope of the conversion, the parameter name
refers to this new location. The scope of a conversion is usually only important for conversions
to C types; the run-time system translator and the Icon compiler try to keep the movement of
descriptor parameters transparent (see below for more details). All elements of the variable part
of an argument list must be descriptors. Therefore, when an element is converted to a C type, an
explicit location must be given for the destination.

The destinations for conversions to cset, integer, real, string, (exact)integer, tmp_string, and
tmp_cset must be descriptors. The destinations for conversions to C_integer, C_double, and (ex-
act)C_integer must be the corresponding C types. However, the destination for conversion to
C_string must be tended. If the destination is declared as ``tended char ’’, then the dword (string
length) of the tended location will be set, but the operation will not have direct access to it. The
variable will look like a ``char ’’. Because the operation does not have access to the string length,
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it is not a good idea to change the pointer once it has been set by the conversion. If the destination
is declared as a descriptor, the operation has access to both the pointer to the string and the string’s
length (which includes the terminating null character). If a parameter is converted to C_string and
no explicit destination is given, the parameter will behave like a ``tended char ’’ within the scope
of the conversion.

The second argument to the def conversion is the default value. The default value may be any
C expression that evaluates to the correct type. These types are given in the following chart.

cset:
struct
b_cset

integer: C_integer

real: double

string:
struct
descrip

C_integer: C_integer

C_double: double

C_string: char *

tmp_string:
struct
descrip

tmp_cset:
struct
b_cset

(exact)integer: C_integer

(exact)C_integer:C_integer

The numeric operators provide good examples of how conversions are used:
operator{1} / divide(x, y)

if cnv:(exact)C_integer(x) && cnv:(exact)C_integer(y) then
actions

else {
if !cnv:C_double(x) then

runerr(102, x)
if !cnv:C_double(y) then

runerr(102, y)
actions
}

end
Within the code indicated by actions, x and y refer to C values rather than to the Icon descriptors

of the unconverted parameters.
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The subject of any type check or type conversion must be an unmodified parameter. For exam-
ple, once an in-place conversion has been applied to a parameter, another conversion may not be
applied to the same parameter. This helps insure that type computations in iconc only involve the
unmodified types of arguments, simplifying those computations. This restriction does not apply to
type checking and conversions in C code.

G.4.2 Scope of Conversions

The following discussion is included mostly for completeness. The scope of conversions sounds
complicated, but in practice problems seldom occur in code that ``looks reasonable’’. If a problem
does occur, the translator catches it. Normally, the intricacies of scope should be ignored and the
person writing run-time routines should code conversions in a manner that seems natural.

An "in-place" conversion of a parameter can create a scope for the parameter name separate
from the one introduced by the parameter list. This is because conversions to C types may require
the converted value to be placed in a different location with a different type. The parameter name
is then associated with this new location. The original scope of a parameter starts at the beginning
of the operation’s definition. The scope of a conversion starts at the conversion. A scope extends
through all code that may be executed after the scope’s beginning, up to a runerr or a conversion
that hides the previous scope (because the type checking portion of the implementation language
does not contain loops or arbitrary gotos, scope can easily be determined lexically).

The use of an in-place conversion in the first sub-expression of a conjunction, cnv1 && cnv2,
has a potential for causing problems. In general, there is no way to know whether the first conver-
sion will effectively be undone when the second conversion fails. If the first conversion is actually
done in-place, the parameter name refers to the same location in both the success and failure scope
of the conjunction, so the conversion is not undone. If the conversion is done into a separate loca-
tion, the failure scope will refer to the original value, so the conversion will effectively be undone.
Whether the conversion is actually done in-place depends on the context in which operation is used.
However, conversion to C_integer and C_double always preserve the original value, so there is no
potential problem using them as the first argument to a conjunction, nor is there any problem using
a non-conversion test there. An example of this uncertainty:

if cnv:string(s1) && cnv:string(s2) then {
/* s1 and s2 both refer to converted values */
}

else { /* s2 refers to the original value. s1 may
refer to either the original or the converted value */

}
The translator issues a warning if there is a potential problem.
It is possible for scopes to overlap; this happens because scopes start within conditional actions.

In rare instances, executable code using the name may appear within this overlapping scope, as in
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the following example, which resembles code that might be found in the definition of a string
analysis function such as find.

if is:null(s) then {
if !def:C_integer(i, k_pos) then

runerr(101, i)
}

else {
if !def:C_integer(i, 1) then

runerr(101, i)
actions

Here, actions occurs within the scope of both conversions. Note that actions is not in the scope
of the original parameter i. This is because that scope is ended in each branch of the outer if by the
conversions and the runerrs.

If overlap does occur, the translator tries to insure that the same location is used for the name in
each scope. The only situation when it cannot do this is when the type of the location is different in
each scope, for instance, one is a C_integer and the other is a C_real. If a name is referenced when
there is conflicting scope, the translator issues an error message.

G.4.3 Type Names

The type-names represent types of Icon intermediate values, including variable references. These
are the values that enter and leave an operation; ``types’’ internal to data structures, such as list
element blocks, are handled completely within the C code.

type-name ::= empty_type |
icon-type |
variable-ref

icon-type ::= null |
string |
cset |
integer |
real |
file |
list |
set |
table |
record |
procedure |
co_expression

variable-ref ::= variable |
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tvsubs |
tvtbl |
kywdint |
kywdpos |
kywdsubj

The type-names are not limited to the first-class types of Icon’s language definition. The type-
names that do not follow directly from Icon types need further explanation. empty_type is the
type containing no values and is needed for conveying certain information to the type inferencing
system, such as an unreachable state. For example, the result type of stop is empty_type. It may
also be used as the internal type of an empty structure. Contrast this with null, which consists of
the null value.

Variable references are not first-class values in Icon; they cannot be assigned to variables. How-
ever, they do appear in the definition of Icon as arguments to assignments and as the subject of
dereferencing. For example, the semantics of the expression

s[3] := s
can be described in terms of a substring trapped variable and a simple variable reference. For
this reason, it is necessary to include these references in the type system of the implementation
language. variable consists of all variable references. It contains five distinguished subtypes. tvsubs
contains all substring trapped variables. tvtbl contains all table-element trapped variables. kywdint
contains &random and &trace. kywdpos contains &pos. kywdsubj contains &subject.

G.4.4 Including C Code

As noted above, C declarations can be included in a declare clause. Embedded C code may refer-
ence these declarations as well as declarations global to the operation.

Executable C code can be included using one of two actions.
detail-code ::= body { extended-C } |

inline { extended-C }
body and inline are similar to each other, except that inline indicates code that is reasonable for

the compiler to put in-line when it can. body indicates that for the in-line version of the operation,
this piece of C code should be put in a separate function in the link library and the body action
should be replaced by a call to that function. Any parameters or variables from the declare clause
needed by the function must be passed as arguments to the function. Therefore, it is more efficient
to declare variables needed by a body action within that body than within the declare. However,
the scope of these local variables is limited to the body action.

Most Icon keywords provide examples of operations that should be generated in-line. In the
following example, nulldesc is a global variable of type descriptor. It is defined in the include files
automatically included by rtt.

&null - the null value.
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keyword{1} null
abstract {

return null
}

inline {
return nulldesc;
}

end

G.4.5 Preprocessor interactions

As mentioned above, rtt has a built-in C preprocessor based on the ANSI C Standard that is used
before the C compiler’s preprocessor. Within its own preprocessor, rtt defines COMPILER to 0 or
1 depending on whether interpreter or compiler code is being generated. It also places a #define
directive for COMPILER at the beginning of every output file. It produces an #include directive
for rt.h after the #define directive. The preprocessor directives in rtt’s output are used by the C
compiler.

Arbitrary text may be passed through rtt using the #passthru directive. The contents of a
#passthru directive are written to the output after each sequence of white space within the con-
tents is replaced by a single space character. #passthru is useful in those rare circumstances where
something needed by the C compiler must be hidden from rtt.

#passthru only works correctly at the global level; if it is used within functions or declarations,
the result is not put in the correct location in the output.

Perhaps the most common use of #passthru is to protect conditional code that is dependent on
a particular compiler – and is protected by (for example) #ifdef __GCC__. Without #passthru, the
#ifdef is processed by rtt’s preprocessor, which is almost certainly not what is wanted.

G.4.6 Error Reporting

runerr( msg_number [ , descriptor ] ) [ ; ]
runerr is translated into a call to the run-time error handling routine. Specifying this as a sepa-

rate action rather than a C expression within a body or inline action gives the compiler additional
information about the behavior of the operation. msg_number is the number used to look up the
error message in a run-time error table. If a descriptor is given, it is taken to be the offending value.

G.4.7 Abstract Type Computations

abstract { type-computations }
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The behavior of an operation with respect to types is a simplification of the full semantics of the
operation. For example, the semantics of the function image is to produce the string representing
its operand; its behavior in the type realm is described as simply returning some string. In general,
a good simplification of an operation is too complicated to be automatically produced from the op-
eration’s implementation (of course, it is always possible to conclude that an operation can produce
any type and can have any side effect, but that is hardly useful). For this reason, the programmer
must use the abstract action to specify type-computations.

type-computations ::= { store [ type ] = type [ ; ] } [ return type [ ; ] ]
type-computations consist of side effects and a statement of the result type of the operation.

There must be exactly one return type along any path from the start of the operation to C code
containing a return, suspend, or fail.

A side effect is represented as an assignment to the store. The store is analogous to program
memory. Program memory is made up of locations containing values. The store is made up of
locations containing types. A type represents a set of values, though only certain such sets corre-
spond to types for the purpose of abstract type computations. Types may be basic types such as
all Icon integers, or they may be composite types such as all Icon integers combined with all Icon
strings. The rules for specifying types are given below. A location in the store may correspond to
one location in program memory, or it may correspond to several or even an unbounded number of
locations in program memory. The contents of a location in the store can be thought of as a conser-
vative (that is, possibly overestimated) summary of values that might appear in the corresponding
location(s) in program memory at run time.

Program memory can be accessed through a pointer. Similarly, the store can be indexed by a
pointer type, using an expression of the form store[type], to get at a given location. An Icon global
variable has a location in program memory, and a reference to such a variable in an Icon program
is treated as a pointer to that location. Similarly, an Icon global variable has a location in the store
and, during type inferencing, a reference to the variable is interpreted as a pointer type indexing
that location in the store. Because types can be composite, indexing into the store with a pointer
type may actually index several locations. Suppose we have the following side effect

store[ type1 ] = type2
Suppose during type inferencing type1 evaluates to a composite pointer type consisting of the

pointer types for several global variables, then all corresponding locations in the store will be
updated. If the above side effect is coded in the assignment operator, this situation might result
from an Icon expression such as

every (x | y) := &null
In this example, it is obvious that both variables are changed to the null type. However, type

inferencing can only deduce that at least one variable in the set is changed. Thus, it must assume
that each could either be changed or left as is. It is only when the left hand side of the side effect
represents a unique program variable that type inferencing knows that the variable cannot be left as
is. In the current implementation of type inferencing, assignment to a single named variable is the
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only side effect where type inferencing recognizes that the side effect will definitely occur.
Indexing into the store with a non-pointer type corresponds to assigning to a non-variable. Such

an assignment results in error termination. Type inferencing ignores any non-pointer components
in the index type; they represent execution paths that don’t continue and thus contribute nothing to
the types of expressions.

A type in an abstract type computation is of the form
type ::= type-name |

type ( variable ) |
attrb-ref |
new type-name ( type { , type } ) |
store [ type ] |
type ++ type |
type ** type |
( type )

The type(variable) expression allows type computations to be expressed in terms of the type
of an argument to an operation. This must be an unmodified argument. That is, the abstract type
computation involving this expression must not be within the scope of a conversion. This restriction
simplifies the computations needed to perform type inferencing.

This expression is useful in several contexts, including operations that deal with structure types.
The type system for a program may have several sub-types for a structure type. The structure types
are list, table, set, record, substring trapped variable, and table-element trapped variable. Each of
these Icon types is a composite type within the type computations, rather than a basic type. Thus
the type inferencing system may be able to determine a more accurate type for an argument than
can be expressed with a type-name. For example, it is more accurate to use

if is:list(x) then
abstract {

return type(x)
}

actions
else

runerr(108, x)
than it is to use

if is:list(x) then
abstract {

return list
}

actions
else

runerr(108, x)
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Structure values have internal ``structure’’. Structure types also need an internal structure that
summarizes the structure of the values they contain. This structure is implemented with type at-
tributes. These attributes are referenced using dot notation:

attrb-ref ::= type . attrb-name
attrb-name ::= lst_elem |

set_elem |
key |
tbl_elem |
default |
all_fields |
str_var |
trpd_tbl

Just as values internal to structure values are stored in program memory, types internal to struc-
ture types are kept in the store. An attribute is a pointer type referencing a location in the store.

A list is made up of (unnamed) variables. The lst_elem attribute of a list type is a type repre-
senting all the variables contained in all the lists in the type. For example, part of the code for the
bang operator is as follows, where dx is the dereferenced operand.

type_case dx of {
list: {

abstract {
return type(dx).lst_elem
}

actions
}

...
This code fragment indicates that, if the argument to bang is in a list type, bang returns some

variable from some list in that type. In the type realm, bang returns a basic pointer type.
The set_elem attribute of a set type is similar. The locations of a set never ``escape’’ as vari-

ables. That is, it is not possible to assign to an element of a set. This is reflected in the fact that
a set_elem is always used as the index to the store and is never assigned to another location or
returned from an operation. The case in the code from bang for sets is

set: {
abstract {

return store[type(dx).set_elem]
}

actions
}

Tables types have three attributes. key references a location in the store containing the type of
any possible key value in any table in the table type. tbl_elem references a location containing the
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type of any possible element in any table in the table type. default references a location containing
the type of any possible default value for any table in the table type. Only tbl_elem corresponds to
a variable in Icon. The others must appear as indexes into the store.

Record types are implemented with a location in the store for each field, but these locations
cannot be accessed separately in the type computations of the implementation language. These
are only needed separately during record creation and field reference, which are handled as spe-
cial cases in the compiler. Each record type does have one attribute, all_fields, available to type
computations. It is a composite type and includes the pointer types for each of the fields.

Substring trapped variables are implemented as structures. For this reason, they need structure
types to describe them. The part of the structure of interest in type inferencing is the reference to the
underlying variable. This is reflected in the one attribute of these types, str_var. It is a reference to a
location in the store containing the pointer types of the underlying the variables that are ``trapped’’.
str_var is only used as an index into the store; it is never exported from an operation.

Similarly table-element trapped variables need structure types to implement them. They have
one attribute, trpd_tbl, referencing a location in the store containing the type of the underlying table.
The key type is not kept separately in the trapped variable type; it must be immediately added to
the table when a table-element trapped variable type is created. This pessimistically assumes that
the key type will eventually be put in the table, but saves an attribute in the trapped variable for the
key. trpd_tbl is only used as an index into the store; it is never exported from an operation.

The type computation, new, indicates that an invocation of the operation being implemented
creates a new instance of a value in the specified structure type. For example, the implementation
of the list function is

function{1} list(size, initial)
abstract {

return new list(type(initial))
}

actions
end

The type arguments to the new computation specify the initial values for the attributes of the
structure. The table type is the only one that contains multiple attributes. (Note that record con-
structors are created during translation and are not specified via the implementation language.)
Table attributes must be given in the order: key, tbl_elem, and default.

In the type system for a given program, a structure type is partitioned into several sub-types
(these sub-types are only distinguished during type inferencing, not at run time). One of these sub-
types is allocated for every easily recognized use of an operation that creates a new value for the
structure type. Thus, the following Icon program has two list sub-types: one for each invocation of
list.

procedure main()
local x



642

x := list(1, list(100))
end

Two operations are available for combining types. Union is denoted by the operator `++’ and
intersection is denoted by the operator `**’. Intersection has the higher precedence. These opera-
tions interpret types as sets of values. However, because types may be infinite, these sets are treated
symbolically.

G.4.8 C Extensions

The C code included using the declare, body, and inline actions may contain several constructs
beyond those of standard C. There are five categories of C extensions: access to interface variables,
declarations, type conversions/type checks, signaling run-time errors, and return statements.

In addition to their use in the body of an operation, the conversions and checks, run-time error,
and declaration extensions may be used in ordinary C functions that are put through the implemen-
tation language translator.

G.4.9 Interface Variables

Interface variables include parameters, the identifier for length of the variable part of an argu-
ment list, and the special variable result. Unconverted parameters, converted parameters with Icon
types, and converted parameters with the internal types tmp_string and tmp_cset are descriptors
and within the C code have the type struct descrip. Converted parameters with the internal type of
C_integer have some signed integer type within the C code, but exactly which C integer type varies
between systems. This type has been set up using a typedef in the automatically included include
file so it is available for use in declarations in C code. Converted parameters with the internal type
of C_double have the type double within the C code. Converted parameters of the type C_string
have the type char . The length of the variable part of a argument list has the type int within the C
code.

result is a special descriptor variable. Under some circumstances it is more efficient to construct
a return value in this descriptor than to use other methods. See Section 5 of the implementation
language reference manual for details.

G.4.10 Declarations

The extension to declarations consists of a new storage class specifier, tended (register is an example
of an existing storage class specifier). Understanding its use requires some knowledge of Icon
storage management. Only a brief description of storage management is given here; see the Icon
implementation book for further details.
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Icon values are represented by descriptors. A descriptor contains both type information and
value information. For large values (everything other than integers and the null value) the descriptor
only contains a pointer to the value, which resides elsewhere. When such a value is dynamically
created, memory for it is allocated from one of several memory regions. Strings are allocated from
the string region. All other relocatable values are allocated from the block region. The only non-
relocatable values are co-expression stacks and co-expression activation blocks. On some systems
non-relocatable values are allocated in the static region. On other systems there is no static region
and these values are allocated using the C malloc function.

When a storage request is made to a region and there is not enough room in that region, a
garbage collection occurs. All reachable values for each region are located. Values in the string and
block regions are moved into a contiguous area at the bottom of the region, creating (hopefully) free
space at the end of the region. Unreachable co-expression stacks and activator blocks are ``freed’’.
The garbage collector must be able to recognize and save all values that might be referenced after
the garbage collection and it must be able to find and update all pointers to the relocated values.
Operation arguments that contain pointers into one of these regions can always be found by garbage
collection. The implementations of many operations need other descriptors or pointers into memory
regions. The tended storage class identifies those descriptors and pointers that may have live values
when a garbage collection could occur (that is, when a memory allocation is performed).

A descriptor is implemented as a C struct named descrip, so an example of a tended descriptor
declaration is

tended struct descrip d;
Blocks are also implemented as C structs. The following list illustrates the types of block

pointers that may be tended.
tended struct b_real *bp;
tended struct b_cset *bp;
tended struct b_file *bp;
tended struct b_proc *bp;
tended struct b_list *bp;
tended struct b_lelem *bp;
tended struct b_table *bp;
tended struct b_telem *bp;
tended struct b_set *bp;
tended struct b_selem *bp;
tended struct b_record *bp;
tended struct b_tvkywd *bp;
tended struct b_tvsubs *bp;
tended struct b_tvtbl *bp;
tended struct b_refresh *bp;
tended struct b_coexpr *cp;
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Alternatively, a union pointer can be used to tend a pointer to any kind of block.
tended union block *bp;

Character pointers may also be tended. However, garbage collection needs a length associated
with a pointer into the string region. Unlike values in the block region, the strings themselves do not
have a length stored with them. Garbage collection treats a tended character pointer as a zero-length
string. These character pointers are almost always pointers into some string, so garbage collection
effectively treats them as zero-length substrings of the strings. The string as a whole must be tended
by some descriptor so that it is preserved. The purpose of tending a character pointer is to insure
that the pointer is relocated with the string it points into. An example is

tended char *s1, *s2;
Tended arrays are not supported. tended may only be used with variables of local scope. tended

and register are mutually exclusive. If no initial value is given, one is supplied that is consistent
with garbage collection.

G.4.11 Type Conversions/Type Checks

Some conditional expressions have been added to C. These are based on type checks in the type
specification part of the implementation language.

is: type-name ( source )
cnv: dest-type ( source , destination )
def: dest-type ( source , value , destination )

source must be an Icon value, that is, a descriptor. destination must be a variable whose type is
consistent with the conversion. These type checks may appear anywhere a conditional expression
is valid in a C program. Note that is, cvn, and def are reserved words to distinguish them from
labels.

The type_case statement may be used in extended C. This statement has the same form as the
corresponding action, but in this context, C code replaces the actions in the type-select clauses.

G.4.12 Signaling Run-time Errors

runerr is used for signaling run-time errors. It acts like a function but may take either 1 or 2
arguments. The first argument is the error number. If the error has an associated value, the second
argument is a descriptor containing that value.

G.4.13 Return Statements

There are three statements for leaving the execution of an operation. These are analogous to the
corresponding expressions in the Icon language.

ret-statments ::= return ret-value ; |
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suspend ret-value ; |
fail ;

ret-value ::= descriptor |
C_integer expression |
C_double expression |
C_string expression |
descript-constructor

descriptor is an expression of type struct descrip. For example
{

tended struct descrip dp;
...
suspend dp;
...

}
Use of C_integer, C_double, or C_string to prefix an expression indicates that the expression

evaluates to the indicated C type and not to a descriptor. When necessary, a descriptor is constructed
from the result of the expression, but when possible the Icon compiler produces code that can use
the raw C value (See Section 5 of the implementation language reference manual). As an example,
the integer case in the divide operation is simply

inline {
return C_integer x / y;
}

Note that a returned C string must not be in a local (dynamic) character array; it must have a
global lifetime.

A descript-constructor is an expression that explicitly converts a pointer into a descriptor. It is
only valid in a return statement, because it builds the descriptor in the implicit location of the return
value.

descript-constructor ::= string ( length , char-ptr ) |
cset ( block-ptr ) |
real ( block-ptr ) |
file ( block-ptr ) |
procedure ( block-ptr ) |
list ( block-ptr ) |
set ( block-ptr ) |
record ( block-ptr ) |
table ( block-ptr ) |
co_expression ( stack-ptr ) |
tvtbl ( block-ptr ) |
named_var ( descr-ptr ) |
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struct_var ( descr-ptr , block-ptr ) |
substr ( descr-ptr , start , len ) |
kywdint ( descr-ptr ) |
kywdpos ( descr-ptr ) |
kywdsubj ( descr-ptr )

The arguments to string are the length of the string and the pointer to the start of the string.
block-ptrs are pointers to blocks of the corresponding types. stack-ptr is a pointer to a co-expression
stack. descr-ptr is a pointer to a descriptor. named_var is used to create a reference to a variable
(descriptor) that is not in a block. struct_var is used to create a reference to a variable that is in a
block. The Icon garbage collector works in terms of whole blocks. It cannot preserve just a single
variable in the block, so the descriptor referencing a variable must contain enough information for
the garbage collector to find the start of the block. That is what the block-ptr is for. substr creates
a substring trapped variable for the given descriptor, starting point within the string, and length.
kywdint, kywdpos, and kywdsubj create references to keyword variables.

Note that returning either C_double expression or substr(descr-ptr, start, len) may trigger a
garbage collection.



Appendix H

Glossary of Defined Symbols

This glossary explains the #ifdef symbols that are used in the C-based source code of the Icon and
Unicon implementation. The current version of Icon, version 9.5, has gone to extreme lengths to
minimize the number of symbols in its source code. The Where field in the table indicates whether
a symbol appears in classic Icon sources (I), in Icon 9.5 (9), and/or in Unicon.

Classic symbols are defined in define.h files copied over from config/*/*/define.h in various man-
ual platform configurations. Many symbols, particularly ones beginning with HAVE_, are generated
by autoconf on platforms where it is available.

The list deliberately omits symbols that are predefined on their respective compilers that begin
with one or two underscores. Also omitted are event codes beginning E_ or e_, which normally are
integer constants but may be used as ifdef controls over whether individual events are instrumented
within a runtime system build. Another category of omitted symbols are those that are the names of
parameters in #begdef multi-line macros; they are local in scope and cannot be modified in define.h
or used anywhere else.

Some symbols – mostly those of historical interest – have been removed from the present source
code. The definitions have been retained here and are colored in grey.

647
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Symbol Where Definition

abs all compute absolute value of x and y

ActStkBlkEnts all number of entries in an activation stack block

AL_SITECONFIG_H_ U protect against including openal-related stuff twice

AlcMax all
this many co-expressions or higher triggers aggressive co-
expression garbage collection (every new co-expression?!
needs to be renamed)

ALIGN_SIZE U alignment chunk size (gdbm)

alloca U system provides alloca()

AllocReg all allocate a region

AllocType U allocation type

Arrays U support C-compatible integer and real arrays

_AS_HEADER U GNU portable shell tool, used as a header (libtp)

AsmOver IU use assembler code overflow checks (remove)

Audio U support audio file playback

BASE_H U base.h has been included (audio)

bcopy IU redefine bcopy as memcpy (libxpm; switch to memcpy)

Bell all ASCII control-G, probably

Big all
number above which string-to-numeric conversion starts to
get fuzzy

BinaryHeader 9 executable header is an actual binary executable, not a script

BLKSIZE IU standard block region size

BLOCKSIZE IU standard block region size

Bool IU Boolean data type (xpm)



649

BOOL IU Boolean data type; avoiding a double typedef

BROKEN_LIBIO U work around broken <libio.h>

BSD IU build on BSD UNIX platform

BSD_4_4_LITE U
accommodate BSD 4.4 Lite’s unusual socket
sin_len/sun_len behavior

ByteBits IU number of bits in a byte

bzero IU redefine bzero as memset (libxpm; switch to memset)

CA_H IU ca.h has been included

CComp IU C compiler that iconc uses

CLK_TCK all
clock ticks per second. deprecated, think about revising mil-
lisec() implementation.

CoClean IU cleanup co-expressions

CoExpr IU support co-expressions

COEXPSIZE IU standard co-expression stack size

COMPILER IU build iconc optimizing compiler

Concurrent U build with concurrent threads

ConcurrentCOMPILER U build iconc with (preliminary) concurrency support

ConsoleWindow U emulate a console window (graphics, mainly Windows)

const U disable the const keyword when necessary

COpts IU C compiler command line options that iconc uses

CRAY IU build on Cray (gdbm, should delete)

CRAY_STACK U legacy CRAY stack linkage structs (delete)

CStateSize IU size of the C state (saved registers) for co-expressions

CSuffix all extension used for C source files

CUsage IU iconc usage string
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CYGWIN 9 build on Cygwin platform

DARWIN_PBUILDER U enable Mac OS X support in audio code

DataParallel U support list-at-a-time data parallel operations

Dbm U enable (N)DBM database support

DBSuffix all extension used for runtime system database files

Debug 9 enable debugging features (libXpm)

DEBUG U print debugging info (delete or rename)

DebugOnly U output debugging statistics after type inferencing (rename)

DeBug IU enable debugging features

DebugHeap U enable extra heap debugging checks

DeBugIconx IU enable debugging features for the VM interpreter, iconx

DeBugLinker IU enable debugging features for the linker, ilink

DeBugTrans IU enable debugging features for the translator, itran

DEBUG_INTERP IU include VM interpreter debugging function stkdump()

DefPath IU
default IPATH/LPATH (legacy, situation more complicated
now)

DescriptorDouble U store reals in descriptors

DiffPtrs all difference/distance between two pointers

DL_GETERRNO U some FreeBSD version <= 2.0 detectable symbol (delete)

DLLICONX U build iconx as a .dll

DMALLOC U enable debugging malloc (audio)

DMAXCOLORS IU
display’s maximum number of colors, if indexed/allocated
colors are in use

DosFncs IU enable MS-DOS functions (should delete)

Double all require C double alignment
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EBCDIC IU build on (non-ASCII) EBCDIC (old IBM) platform

errno U undefine errno to allow use as a Unicon keyword

EventMon IU support program execution event monitoring

EWOULDBLOCK U define socket error codes on Windows

ExecImages IU executable images (save() function), obsolete

ExecSuffix all extension used for executables

ExpTools IU use TOOLS environment to modify patched executables (?)

ExternalFunctions IU external functions; some kind of precursor to loadfunc()

F_Nqual all flag: descriptor value is not a string/qualifier

F_Ptr all flag: descriptor vword is a pointer

F_Typecode all flag: descriptor dword contains a type code

F_Var all flag: descriptor vword is a variable reference

FAttrib all support file attributes

FieldTableCompression U Enable field table compression in icode

FILEPAT_H IU filepat.h has been included

FileSep all File path separator. Specific to common/filepart.c

FncTrace IU enable call tracing keyword &ftrace (delete)

FOR_MSW IU libXpm Microsoft Windows support

FreeBSD IU building on FreeBSD platform

fsync U provide faux fsync() on Windows if needed

GammaCorrection all gamma correction value to apply to colors

GenericBSD IU build on generic BSD-based platform

GC_TIMING_TUNING U measure and report garbage collection times (rename?)

_GETOPT_H U "getopt.h" has already been included (gdbm)
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GETOPT_COMPAT U non-POSIX getopt() compatible (gdbm, should delete)

Global all
embarrassing alias for "extern" (for ancient pre-ANSI com-
pilers; delete)

GNU U use "ndbm.h" not <ndbm.h> (gdbm)

GranSize IU storage allocation granule size (dead, delete)

Graphics all build with (2D) graphics facilities

Graphics3D U build with 3D graphics facilities

HardWiredPaths IU support patching the path to iconx into executable headers

HAVE_ALLOCA_H U system has <alloca.h> (gdbm)

HAVE_ARPA_INET_H U system has <arpa/inet.h> (libtp)

HAVE_ASCTIME_R U system has asctime_r()

HAVE_BCOPY U system has bcopy() (libtp; switch to memcpy or memmove)

HAVE_BZERO U system has bzero() (libtp; switch to memset)

HAVE_CLOCK_GETTIME U system has clock_gettime()

HAVE_CONFIG_H U build library using Unicon’s "config.h"

HAVE_CRYPT U system has crypt()

HAVE_CRYPT_R U system has crypt_r()

HAVE_CTIME_R U system has ctime_r()

HAVE_D3D U system has Direct3D library

HAVE_ERRNO_H U system has <errno.h>

HAVE_FCNTL_H U system has <fcntl.h>

HAVE_FILE_H U system has <file.h>

HAVE_FLOCK U system has flock()

HAVE_FSYNC U system has fsync()



653

HAVE_FTRUNCATE U system has ftruncate()

HAVE_GETADDRINFO U system has getaddrinfo()

HAVE_GETGRENT_R U system has getgrent_r()

HAVE_GETHOSTNAME U system has gethostname()

HAVE_GETPWUID U system has getpwuid()

HAVE_GETRLIMIT U system has getrlimit()

HAVE_GETRUSAGE U system has getrusage()

HAVE_GETUID U system has getuid()

HAVE_GMTIME_R U system has gmtime_r()

HAVE_INET_ATON U system has inet_aton()

HAVE_INET_PTON U system has inet_pton()

HAVE_KEYWORD__THREADU system has __thread

HAVE_LIBALUT U system has libalut, the openAL utility library

HAVE_LIBALTYPES U system has <AL/altypes.h> and <AL/alexttypes.h>

HAVE_LIBCL U system has libcl (opencl() function; unfinished business)

HAVE_LIBFTGL U system has FTGL, a font library for OpenGL

HAVE_LIBGL U system has OpenGL 3D library

HAVE_LIBIODBC U system has libiodbc

HAVE_LIBJPEG U system has JPEG image format

HAVE_LIBJVOIP U system has JVOIP

HAVE_LIBJRTP U system has JRTP

HAVE_LIBJTHREAD U system has JTHREAD

HAVE_LIBODBC U system has libodbc

HAVE_LIBOGG U system has OGG audio
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HAVE_LIBOPENAL U system has OpenAL audio

HAVE_LIBPNG U system has PNG image format

HAVE_LIBPTHREAD U system has posix threads library

HAVE_LIBSDL U system has SDL

HAVE_LIBSMPEG U system has SMPEG library

HAVE_LIBSSL U system has SSL encryption

HAVE_LIBVOIP U system has libvoip

HAVE_LIBVORBIS U system has vorbis

HAVE_LIBX11 U system has Xlib

HAVE_LIBXPM U system has libXpm (avoid gotchas when including xpm.h)

HAVE_LIBZ U system has libZ compression

HAVE_MEMCPY U system has memcpy()

HAVE_MEMORY_H U system has <memory.h>

HAVE_MEMSET U system has memset()

HAVE_NET_ERRNO_H U system has <net/errno.h>

HAVE_NETDB_H U system has <netdb.h>

HAVE_NETINET_IN_H U system has <netinet/in.h>

HAVE_OGG U system has libogg (merge into HAVE_LIBOGG or delete)

HAVE_RENAME U system has rename() (gdbm)

HAVE_SETRLIMIT U system has setrlimit()

HAVE_SNPRINTF U system has snprintf()

HAVE_ST_BLKSIZE U system stat() has st_blksize field

HAVE_STDLIB_H U system has <stdlib.h> (gdbm)

HAVE_STRERROR U system has strerror()
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HAVE_STRING_H U system has <string.h>

HAVE_STRINGS_H U system has <strings.h>

HAVE_SYS_ERRNO_H U system has <sys/errno.h>

HAVE_SYS_ERRLIST U system has sys_errlist[]

HAVE_SYS_FILE_H U system has <sys/file.h>

HAVE_SYS_NERR U system has sys_nerr

HAVE_SYS_RESOURCE_H U system has <sys/resource.h>

HAVE_SYS_SOCKET_H U system has <sys/socket.h>

HAVE_SYS_TYPES_H U system has <sys/types.h>

HAVE_TIMEZONE U system has timezone()

HAVE_TZNAME U system has tzname()

HAVE_UNISTD_H U system has <unistd.h>

HAVE_VOICE U system has voice over IP

HAVE_VSPRINTF U system has vsprintf()

HAVE_WORKING_VFORK U system has a working vfork() function

HAVE_XFT U system has XFT library

HaveProfil IU system has profil(). Should be autoconfed.

HaveXpmFormat 9 Xpm support is available

Header IU system has an executable header of some kind

HEAPSIZE IU standard allocated block region size

HELPER_THREAD U
helper thread handles window input events (pollevent() calls
should be removed, not made a no-op)

HighResTime U use high resolution timers if tracing type inferencing

HostStr IU host name to use instead of what uname() would give



656

HP IU build on Hewlett Packard platform

HSegs all hash table segments

HSlots all hash table slots

HSuffix IU extension used for C include files

ICA_H IU ica.h has been included

IcodeASuffix all extension used for icode "a" files ? (delete)

IcodeSuffix all extension used for icode a files

Iconc IU build optimizing compiler (merge with COMPILER?)

IconcLogAllocations U log memory allocations in iconc

ICONCORE IU environment variable that says errors should coredump

ICONC_XLIB IU link option to link graphics into iconc-generated executable

Iconify IU enable canvas=iconic to actually call XIconifyWindow

IN_GCC U if maybe we are compiling using gcc (gdbm; consider delete)

index all
define legacy index function as strchr (libxpm; just nuke in-
dex)

INT_16_BITS IU C compiler’s int is 16 bits (gdbm)

IntBits all number of bits in an int

INTMAIN IU C compiler requires main to return int not void

IPATH IU
environment variable list of directories the linker searches
for ucode modules

IRIS4D IU build on SGI Iris platform

ISQL U system supports SQL/ODBC

JCS_EXTENSIONS U use libjpeg-turbo jpeg color space extensions

JLIB U building with Jori’s VOIP library

KbhitIoctl U implement kbhit() as a call to ioctl()



657

KbhitPoll U use poll() to wait for keyboard input in lieu of kbhit()

KeyboardFncs all support (raw) keyboard functions

L_SET U
define alias for SEEK_SET (gdbm; change code to just
SEEK_SET?)

LargeInts IU system has arbitrary precision integers

LibSuffix IU extension used for C (static) libraries

_LIBTP_ U we are internal and don’t need externs for methods

LineCodes IU support better debug/error/line number reporting

lint IU is the lint tool in use? (byacc parser skeleton)

Linux U system is running Linux

LoadFunc all support dynamically loaded C code via loadfunc()

LOCK_EX U
provide a LOCK_EX definition for flock() if one is missing
(gdbm)

LOCK_NB U
provide a LOCK_NB definition for flock() if one is missing
(gdbm)

LOCK_SH U
provide a LOCK_SH definition for flock() if one is missing
(gdbm)

LOCK_UN U
provide a LOCK_UN definition for flock() if one is missing
(gdbm)

LogHSlots all log(hash table slots)

LogHuge all
maximum base 10 exponent (+ 1) of real/double, used to de-
tect overflow

LONG all maybe it is just an int

LONG_64_BITS IU C compiler’s long is 64 bits (gdbm)

LongLongWord U use long long int for typedef of word

LONG64 IU C compiler’s long is 64 bits (xpm)
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LoopThreshold U number of tended var initializations iconc will unroll

M_PI IU constant value of Pi

MacGraph U
build graphics using (legacy pre OSX) Mac graphics (should
delete)

MACGRAPH_H IU macgraph.h has been included

MACINTOSH all build on legacy Mac platform (delete?)

MacOS U build on modern UNIX-based Mac platform

max all compute maximum of x and y

MaxAbrSize all maximum allocated block region size

MAXADDRS U
maximum number of IP addresses associated with a host
name (libtp)

MaxBlock all maximum size that can be allocated via malloc()

MAXCOLORNAME all maximum length of a color name

MAXFONTWORD all maximum length of a font family name

MaxHdr all maximum supported size of an executable header

MaxHeader IU bytes offset at which the icode header will be found

MaxHLoad all average hash table bucket length that triggers expansion

MAXHOSTNAMELEN U
maximum host name length (change to use
HOST_NAME_MAX from <limits.h>)

MaxLevel IU Maximum levels (fragment, delete)

MaxListSlots all Maximum number of list slots per block, if any

MaxLong all largest long integer

MaxNegInt all string representation of smallest negative number

MaxPath all Maximum path length (merge with PATH_MAX ?)

MaxStrSpace all maximum allocated string region size
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MAXXOBJS all maximum number of X Windows objects per call

MDEBUG U Include messaging debug output to standard error (delete)

Messaging U build in support for HTTP, POP, etc.

MICROSOFT U build on legacy Microsoft C compiler (delete)

min all compute minimum of x and y

MinAbrSize all minimum allocated block region size

MinHLoad all average hash table bucket length that triggers reduction

MinLong all smallest long integer

MinMStackSize IU minimum main co-expression stack size

MinQualLstSize IU minimum qualifier list size

MinStackSize IU minimum stack size

MinStatSize IU minimum static region size (delete)

MinStrSpace IU minimum string region size (delete)

MonitoredTrappedvar U support variable traps, apparently only on locals

_MSC_VER IU Microsoft C version, dated workaround, check for deletion

MSDOS IU
build on Microsoft DOS and descendants (includes Win-
dows, LOL)

MStackSize all default main co-expression’s interpreter stack size

MSTKSIZE IU
environment variable to override main co-expression’s stack
size

MSVC IU build on Microsoft Windows using Visual C/C++

MSWIN 9 build on Microsoft Windows

MSWIN64 9 build on 64-bit Microsoft Windows

MSWindows IU build graphics using Microsoft Windows

MultipleRuns IU support multiple runs (e.g. ProIcon)
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MultiProgram IU support multiple loaded programs

MVS IU build on MVS operating system

NAME_MAX U longest allowed filename defaults to _POSIX_NAME_MAX

NamedSemaphores 9U Named semaphores used on MacOS

NAMESLOWCASE 9 store (color) names in lower case (libXpm)

NativeCoswitch U build co-expression facilities using assembler

NativeObjects U
support objects directly, not as records (experimen-
tal/unfinished)

NEED_STRCASECMP 9 provide strcasecmp() if needed (libXpm)

NEED_STRDUP 9 provide strdup() if needed (libXpm)

NEED_STRSTR 9 provide strstr() if needed (libXpm)

NEED_UTIME U include <utime.h> if needed (posix facilities)

Network U provide some crude web-reading code (consider deletion)

Never U not defined (needs examination)

NO_CONFIG_H IU don’t use config.h build standalone (rename?)

NO_ZPIPE IU don’t uncompress .Z files via a piped process (libXpm)

NoArrays U build without arrays

NoAuto U build without autoconf (gdbm)

NoCoExpr IU build without co-expressions

NoConcurrent U build without concurrency

NoDbm U build without DBM database support

NOERRBUF IU
environment variable, if set do not buffer standard error out-
put

NoEventMon U build without event monitoring

NoExternalFunctions U build without external functions support
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NoDescriptorDouble U build without storing reals in descriptors

NoFreeColorFix IU don’t free any context’s colors (perma-enable the fix)

NoGL U build without OpenGL

NoGraphics IU build without graphics facilities

NoHeader IU build without executable headers

NoIconify IU build without canvas=iconic ability in graphics facilities

NoINTMAIN IU build without specifying that main() returns an int

NOJLIB U building without Jori’s VOIP library

NoJPEG U build without JPEG

NoKeyboardFncs all build without keyboard functions

NoLargeInts U build without arbitrary precision integers

NoLIBZ U build without libz

NoLsExtensions U suppress GNU ls(1) extension on directory read

NOMAIN IU build patchstr as a module to be linked, omit main()

NoMessaging U build without messaging facilities

NoMonitoredTrappedVar U build without variable trap support

NoMouseWheel IU don’t support mouse scroll wheel events (remove)

NoMultiProgram U build without multiple loaded programs support

NoNativeCoswitch U build without a native co-expression switch

NoODBC U build without SQL/ODBC

NoPatternImage U build without extended pattern image() support (delete)

NoPatternType U build without the pattern data type

NoPipes 9 build without pipes/ open mode "p"

NoPNG U build without PNG
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NoPosixFns U build without Posix facilities

NoProfil IU build without profil()

NoPseudoPty U build without pseudo-tty / bidirectional pipes

NoRandomize U do not set the random number seed

NoReadDirectory 9 build without directory read capability

NoRTT all build (preproc/) without RTT extensions

NoStackCheck IU build without checks for stack overflow

NoStrInvoke IU build without string invocation

NoSysOpt 9 build without system getopt()

NoTypeDefs all grttin.h includes typedefs.h unless this symbol is defined

NoVFork U build without vfork()

NoWildCards IU build without support for asterisks in filenames

NoXpmFormat all build without Xpm color pixmap file format

NT U build on (modern) MS Windows

NTConsole IU build to use MS Windows native cmd.exe console

NTGCC U build with GCC on MS Windows

ObjSuffix IU extension used for C object modules

ODBCVER U ODBC version

OF U undefine OF to avoid gcc warning on redefinition

OLD_NTGCC U code for old versions of GCC on Windows (delete)

opt_try U optimization to try (need to analyze before deletion)

OptimizeDescripAsgn U Optimize descriptor assignments

OptimizeLit U Optimize literals (should perma-enable)

OptimizeLoop U Optimize loops (should perma-enable)
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OptimizePoll U Optimize pollevent() calls (should perma-enable)

OVLD U
enable operator overloading (experimental; not language
canon)

OVLD_DEBUG U debug operator overloading

OsNameDefines all provide OS_NAME_DEFINES (libXpm)

PATH_MAX U maximum path length for file names (posix)

PathSep IU platform-dependent IPATH/LPATH separator character(s)

PatternImage U
detailed images of (SNOBOL) pattern values (merge into
PatternType)

PatternType U support (SNOBOL) pattern data type

Pipes all support (unidirectional) pipes, open() mode "p"

PIXEL_T IU Pixel has already been typedefined (libxpm)

PNG_LIBPNG_VER U portable network graphics library version

Polling IU include periodic checks, e.g. for Window input

PORT IU some vague abstract portable platform (delete)

PosixFns U support POSIX facilities

PPDirectives all preprocessor directives RTT adds to C

PPInit IU platform-specific predefined symbol additions

Precision all number of digits to use in string conversion of real number

PRINTF_DEBUG U enable debugging printf’s for pattern facilities (rename)

PROFIL_CHAR_P IU profil() requires char * in its first argument

PseudoPty U enable pseudo-tty (bidirectional pipe-like) facilities

PTHREAD_STACK_MIN U Minimum thread stack size in bytes. (Pthreads)

PthreadCoswitch U build co-expression facilities using Pthreads

QLSIZE IU
environment variable name to use for the size of the qualifier
list (number of live strings allowed during garbage collec-
tion)
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QSortFncCast U data type of system qsort()’s function argument

QualLstSize all
default size of the qualifier list (no. live strings allowed dur-
ing garbage collection)

ReadBinary IU read file in binary mode

ReadDirectory 9 support directory reading

ReadEndBinary IU open/update, read and write file in binary mode (rename?)

ReadText IU read file in text mode

ReadWriteBinary IU create/truncate, read and write file in binary mode

Redhat71 U system has Redhat 7.1 header bug (Xosdefs)

RefPath IU default path used for includes, if any

RegionCushion all % of region that gc must free, or we need a bigger region

RegionGrowth all % of region that a new larger region should request

REPO_REVISION U software repository version #

reverse_logic U use reverse logic (delete)

rindex IU
define legacy rindex function as strrchr (libxpm; just nuke
rindex)

RT_H all rt.h has been included

RTLD_LAZY all if this dload() parameter is not defined, supply a value

RttSuffix all extension used for RTT source files

Rttx 9 build the interpreter runtime system (rtt -x, for iconx)

RUSAGE_THREAD U support getrusage("thread") (Linux-specific == boo)

S_IFMT IU
if we don’t have this smybol from <sys/stat.h> include it and
<sys/types.h>

S_ISDIR IU supply "is directory" bit flag check if its missing (Windows)

ScrollingConsoleWin U
native editregion w/ scrollbars for console window (MS Win-
dows)
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SEEK_SET U define SEEK_SET as 0 if not defined (gdbm; remove)

SEPARATE_YYERROR U
don’t use legacy yyerror() in error.h, use merr (delete
legacy?)

sequent all build on Sequent platform (libXpm)

sgi U build on Silicon graphics platform (gdbm, should delete)

ShellHeader IU use a script in front of icode to launch iconx

SHORT all maybe it is just an int

SigFncCast U data type of system signal()’s function argument

_SIMX_H IU "simx.h" has already been included (xpm)

SM_DIGITIZER U Windows touchscreen device can be queried

SOCKET_ERROR U provide a default value of SOCKET_ERROR

SoftThreads U Unicon-level threads (prototype, do not use)

SourceSuffix all extension used for Icon/Unicon source files

sparc U build on Sun Sparc processor (gdbm, should delete)

SQL_LENORIND U data type ODBC uses for certain SQL args, usually SQLLEN

Sqlinc IU Size of qualifier list increment

_SSL_DISC_H_ U tpdssl.h is included (rename?)

STACK_DIRECTION U C stack direction (gdbm)

StackAlign all align interpreter stack to this many bytes

StackCheck IU perform interpreter stack overflow checks

StackPic IU diagnostic stack pictures for debugging/monitoring

StackSize all default size of interpreter stack

stat U if system idiotically defines stat, undefine it

STAT_ZFILE IU
stat() and uncompress .Z file if needed (idiotically define stat,
on Windows) (libXpm)
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STDC U system is using ANSI C

STDC_HEADERS U system has ANSI standard header files

strlen IU if system idiotically defines strlen, undefine it

STRSIZE IU name of environment variable for string region size

sun U build on Sun Microsystems platform (gdbm, should delete)

SUN IU build on Sun Microsystems platform (should delete)

SVR4 9 build on UNIX System V release 4 (libXpm, gdbm)

SysOpt all use the system-provided getopt() instead of our own

SysSelectH U system has <sys/select.h> (migrate to autoconf)

SYSV 9 build on UNIX System V (libXpm)

TallyOpt U add -T option, print an array of 16 counters on exit (delete)

TargetDir all Target directory, usually the current working directory

test IU build a standalone test of mktemp() (rlocal, should delete)

TEST U build a standalone test of getopt() (gdbm, should delete)

TokDotH 9 filename that overrides the token.h file definitions to use

TP_H U tp.h has been included

TPDUNIX_H U tpdunix.h has been included

TRACE all name of TRACE environment variable (default: "TRACE")

TranStats IU generate iconc translation statistics

True IU non-zero (xpm)

TSTATARG U pass thread state arguments (experiment, do not use)

tv_bit_ge IU if not a macro, supply function prototype

TV_H IU tv.h has been included

Type U undefine Type to avoid gcc warning on redefinition
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TypTrc U type tracing (iconc)

USuffix 9U Suffix used for combined ucode files

U1Suffix all Suffix used for ucode instructions (may be empty)

U2Suffix all Suffix used for ucode public interfaces

Unicode U support Unicode strings and csets (prototype, do not use)

UNICON_IOCTL U provide a working ioctl() call (normalize to autoconf)

UNIX IU system is a UNIX

UNIXDISC_H U unixdisc.h has been included (libtp)

UpStack IU C stack grows upwards

URI_H U uri.h has been included

URI_SCHM_H U uri_schm.h has been included

UTIL_H U util.h has been included

UX10 U HPUX 10 platforms do not get the default NAME_MAX

VerifyHeap U enable extra heap verification checks

VOID_SPRINTF IU system has a void sprintf() (libXpm, delete)

VordBits U Number of bits in a vector word

VM IU build on IBM VM operating system

VMS all build on DEC VMS operating system

VTBL_H IU vtbl.h has been included

WildCards IU support asterisks and such in filenames

WIN32 9 Predefined compiler symbol when building on Windows

WinExtns 9 support MS Windows-specific functions

WinGraphics 9
build graphics using MS Windows (renamed from MSWin-
dows)
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WINVER IU MS Windows version

WOP_H IU wop.h has been included

WordBits IU number of bits in a machine word

WORD64 all C compiler’s word is 64 bits (xpm)

WriteBinary IU write file in binary mode

WriteText IU write file in text mode

X_NOT_STDC_ENV U under Redhat 7.1, disable this bogus definition

X_OK IU access() execute permission check disabled under Windows

X_WCHAR U under Redhat 7.1, disable this bogus definition

XlibSpecificationRelease U version of X11 we are compiling with

XPM_H all xpm.h has been included

XPMI_H IU XpmI.h (internal header) has been included

XpmFormat all build with libXpm support

XpmFree IU facilitate redefining libXpm’s free()

_XUTIL_H_ 9 xutil.h has been included

XWindows all build graphics using X11

YY_NO_LEAKS IU free up yacc stack

YYDEBUG all include yacc (parser) debugging code

YYLEX_PARAM IU send a parameter to yylex()

YYMAXDEPTH all initial (icon[tc]) parse stack depth (byacc, yystacksize)

YYPARSE_PARAM IU parameter to (icon[tc]) yyparse() (byacc)

YYPARSE_PARAM_TYPE IU type of parameter to (icon[tc]) yyparse() (byacc)

YYPURE IU free up yacc stack

YYSTACKSIZE IU initial (icon[tc]) parse stack depth (byacc, yymaxdepth)
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YYSTYPE all yacc value stack type

ZPIPE 9 uncompress .Z files via a piped process (libXpm)
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H.1 A Bestiary of Unicon Releases

The table below identifies the points at which the version details changed and also (as far as is
practicable) the points at which a binary release was made. The table also contains suggestions to
tag the historical releases. Windows Date is the Version Date reported by the Windows binary.

SVN git Version Version Windows git
rev hash Date Date tag

16bebbfd 13.2 December 20, 2020 December 20, 2020 13.2
a37d2288 13.1 November 6, 2019
f22d949a 13.1 August 19, 2019

5965 dce80670 13.1 March 2, 2019 March 24, 2019 13.1
5920 283f5909 13.1 March 2, 2019
5888 c27495fd 13.1 January 19, 2019
5854 5eb096f4 13.0 December 6, 2018
5599 a6a53187 13.0 August 10, 2017
5080 380c9ec5 13.0 April 16, 2017 April 16, 2017 13.0.1
5076 2f471f57 13.0 April 16, 2017
5039 8ddc1399 13.0 April 10, 2017
4777 37b670df 13.0 Feb 1, 2017 Feb 1, 2017 13.0
4768 fad1e049 13.0 Jan 30, 2017
4500 3de78ac1 13.0 Aug 30, 2016
4237 e9bb5587 12.3 Feb 29, 2016 Feb 29, 2016 12.3
4232 8cb66e3a 12.3 Feb 29, 2016
4166 e717f130 12.3 Sep 12, 2015
3976 2edead79 12.2 Dec 2, 2014 Dec 2, 2014 12.2
3975 2b1344d4 12.3 Dec 2, 2014
3883 250626b8 12.1 July 17, 2014
3420 eee39677 12.1 April 13, 2013 April 13, 2013 12.1.2
3312 a89fd52c 12.1 November 19, 2012
3231 4ae6595f 12.1 August 06, 2012 August 12, 2012 12.1.1
3211 7f7f54e6 12.1 August 06, 2012 August 6, 2012 12.1
3101 3dc88528 12.1 May 31, 2012
3090 509e849d 12.1 May 21, 2012
2983 9db42528 12.0 or 11.9 November 2, 2011 November 2, 2011 12.0.3
2857 6c12273b 12.0 or 11.9 November 2, 2011 November 2, 2011 12.0.2
2788 bdffe5e7 12.0 or 11.9 July 15, 2011 July 15, 2011 11.9.1
2786 39258419 11.7 January 14, 2011 July 13, 2011 12.0.1

continued . . .
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SVN git Version Version Windows git
rev hash Date Date tag

2708 547d0670 11.7 January 14, 2011 March 10, 2011 12.0 11.9
2675 11466f2e 11.7 January 14, 2011 February 22, 2011 11.8
2623 39a3e916 11.7 January 14, 2011
2535 268a2a6a 11.7 January 22, 2010 January 22, 2010 11.7.1
2237 7465a6d4 11.7 January 22, 2010 January 22, 2010 11.7
2094 14bf54ab 11.6 October 12, 2009
1932 5ee2eb2f 11.5 March 22, 2009
1636 a683b0ad 11.5 April 27, 2008
1362 5b279165 11.4 January 10, 2007
1273 018bbb2a 11.3 March 20, 2006
1213 5c306bdc 11.3 (beta) November 30, 2005
1117 85d2d3f2 11.3 (beta) June 23, 2005
1078 95d17114 11.3 (beta) April 28, 2005
1051 1eb51620 11.2 (beta) February 18, 2005
1018 4e83fa58 11.2 (beta) January 4, 2005
922 c73adaed 11.1 (beta) October 18, 2004
882 0df3e550 11.1 (beta) July 6, 2004
810 794f8018 11.0 (beta) May 15, 2004
672 520e9aea 11.0 (beta) February 1, 2004
548 63b5dcc1 11.0 (beta) July 8, 2003
520 175cc419 11.0 (beta) June 2, 2003
492 d7388853 11.0 (beta) May 24, 2003
484 11eea964 11.0 (beta) May 23, 2003
411 bf6174b2 10.0 (beta-3) November 25, 2002
395 f7804ff1 10.0 (beta-3) October 25, 2002
369 a5cadd88 10.0 (beta-3) August 24, 2002
274 4ea85e6f 10.0 (beta-3) April 27, 2002
244 441aad90 10.0 (beta-3) February 14, 2002
58 be738a6a 10.0 (beta-2) August 1, 2001
3 984fa078 10.0 beta January 18, 2001



672



Appendix I

Mutex Use in the Runtime System

This appendix collects together the various mutexes used in the runtime system and provides a brief
explanation of their use.

Mutex Definition

MTX_OP_ASTR
Used to serialize the self modification of str to Astr. See section
8.2.5 on page 129.

MTX_OP_AREAL Serialize the self modification of real to Areal.

MTX_OP_ACSET Serialize the self modification of cset to Acset.

MTX_OP_ASTATIC Serialize the self modification of static to Astatic.

MTX_OP_AGLOBAL Serialize the self modification of global to Aglobal.

MTX_OP_AMARK Serialize the self modification of mark to Amark.

MTX_OP_AGOTO Serialize the self modification of goto to Agoto.

MTX_LIST_SER
Used to ensure that each list header block has a unique identification
number. See section 4.2 on page 51.

MTX_COEXP_SER Ensure that each coexpression stack block has a unique id.

MTX_SET_SER Ensure that each set header block has a unique id.

MTX_TABLE_SER Ensure that each table header block has a unique id.
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MTX_PAT_SER Ensure that each pattern header block has a unique id.

MTX_RECID Ensure that each record header block has a unique id.

MTX_STRHEAP
Used to serialize access to the string regions when creating a new
thread and when reporting the sizes with &regions. See section
12.3.5 on page 223

MTX_BLKHEAP
Serialize access to the block regions when creating a new thread and
reporting sizes.

MTX_TLS_CHAIN Used to protect the global list of thread states (thread local storage).

MTX_CURFILE_HANDLE Used to serialize the dynamic loading of C functions in loadfunc.

MTX_SEGVTRAP_N Protect the handler of run-time error 302 on segmentation faults.

MTX_DR_TBL Protect access to the dynamic record global table list dr_tbl.

MTX_SOCK_MAP Protect access to the socket map global list sock_map.

MTX_THREADCONTROL
Used during the suspension and resumption of threads in (for exam-
ple) Garbage Collection. See section 33.4.4 on page 532.

MTX_NARTHREADS Used to protect the count of running threads. See page 532.

MTX_COND_TC
Used with the condition variable during the suspension and resump-
tion of threads.

MTX_HANDLERS Used to serialize the registration of signal handlers.

MTX_ALCNUM
Serialize access to the count of allocated coexpressions since the
last garbage collection (used to force a new GC if over a predefined
maximum).

MTX_PUBLICSTRHEAP Used when swapping public and private heaps. See page 223.

MTX_PUBLICBLKHEAP Used when swapping public and private heaps. See page 223.

MTX_GC_QUEUE Not currently in use.

MTX_QUALSIZE Not currently in use.

MTX_STKLIST Serialize access to the chain of co-expression blocks. See page 180.
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MTX_POLLEVENT Used to serialize access to open windows event queues.

MTX_NOMTEVENTS Serialize access to the count of monitoring events.

MTX_MUTEXES
Used to serialize the creation of mutexes for the application pro-
gram.

MTX_CONDVARS
Used to serialize the creation of condition variables for the applica-
tion program.

MTX_STRINGTOTAL
Serialize access to the variable holding the number of bytes allocated
in string regions through the lifetime of program execution.

MTX_BLOCKTOTAL
Serialize access to the variable holding the number of bytes allocated
in block regions through the lifetime of program execution.

MTX_COLL Not currently in use.

MTX_PATIMG_FUNCARR
Protect the initialization of the list of strings of built-in pattern func-
tions and operators.

MTX_INITIAL
Protect the language level initial block, which has an opcode of
Op_Agoto.



676

GNU Free Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,

Boston, MA 02111-1307 USA. Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful

document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed

by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the condi-
tions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
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Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Exam-
ples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommer-

cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
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or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sec-

tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modifi-
cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
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of the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Sec-

ondary Sections and contain no material copied from the Document, you may at your option des-
ignate some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
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of your Modified Version by various parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the

terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled "Ac-
knowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under

this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent docu-

ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if
the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
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users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Text may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Doc-

ument under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided

for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documen-

tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.
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Index

&name, see Keyword, &name

acset, see Virtual machine, Instruction, acset
addmem, see C functions, addmem
Address spaces, 39, 100, 106, 225, 230
adjust, see C functions, adjust
aglobal, see Virtual machine, Instruction, aglobal
agoto, see Virtual machine, Instruction, agoto
alcblk, see C functions, alcblk
alccoexp, see C functions, alccoexp
alcfile, see C functions, alcfile
alclint, see C functions, alclint
alclist, see C functions, alclist
alclstb, see C functions, alclstb
alcreal, see C functions, alcreal
alcrecd, see C functions, alcrecd
alcrefresh, see C functions, alcrefresh
alcselem, see C functions, alcselem
alcset, see C functions, alcset
alcstr, see C functions, alcstr
alcsubs, see C functions, alcsubs
alctable, see C functions, alctable
alctelem, see C functions, alctelem
alctvtbl, see C functions, alctvtbl
Algol, 12
Allocated block region, 199, 203–205, 208,

216–220, 224, 225, 228, 229, 590, 595,
602, 605, 624, 655, 658, 659

Allocated string region, 69, 70, 199, 202, 203,
212–214, 224, 229, 247, 249, 590, 596,
602, 658

Allocation, 198, 198–200, 200, 335, 530–531,

589, 590, 601
Alphard, 135
Alternation, 16, 17, 30, 37, 144, 156–159, 165,

296, 298, 330, 346, 363, 574, 575, 580,
619, 622

Alternation expressions, 144, 330, 346, 574, 575
amark, see Virtual machine, Instruction, amark
anycmp, see C functions, anycmp
APL, 6
Applicative Operation, 20
apply, see Virtual machine, Instruction, apply
areal, see Virtual machine, Instruction, areal
Arg, see Macros, Arg
arg, see Virtual machine, Instruction, arg
argp, 175–177, 180, 181, 326, 391
ArgType, see Macros, ArgType
Argument list adjustment, 170, 269, 325, 326
Argument processing, 170
Argument transmission, 30
Arguments

evaluation, 17, 30
extra, 30, 184, 623
function, 30, 168, 172, 443, 455, 585, 586,

598, 636, 664, 665
omitted, 20, 601
operator, 12, 61, 144, 161, 263, 304, 329,

574, 631, 639
procedure, 30, 32, 168, 170, 247, 275, 316,

336
variable number of, 30, 170, 172, 304, 553,

585, 586, 629
ArgVal, see Macros, ArgVal
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Arithmetic
arithmetic overflow, 43
fixed point arithmetic, 101
integer arithmetic, 234, 377
pointer arithmetic, 404
real arithmetic, 234

ASCII, 19, 40, 65, 77, 78, 541, 620, 648
asgn, see C functions, asgn, see also Virtual

Machine, Instruction, asgn
Assembly language, 41, 43, 44, 181, 182, 261,

411
Assignment, 71, 236, 239, 358
Assignment operations, 10, 11, 13, 18, 20, 22,

25, 28, 33, 37, 54–56, 67, 70–73, 81,
104, 106, 112, 167, 198, 201, 223, 237,
239, 240, 249, 257, 276, 288, 311, 318,
328, 351, 360, 390, 391, 459, 487, 588,
589, 623, 636, 638, 640

Associative lookup, 7, 25
Associativity, 570
astatic, see Virtual machine, Instruction, astatic
astr, see Virtual machine, Instruction, astr
Augmented assignment operations, 12, 126, 579

Back chain, 203–206, 217, 218
Backtracking, 17, 18, 291, 298

control, 17, 18, 37, 137, 164, 263
data, 18, 22, 162

bang, see Virtual machine, Instruction, bang
Basis, the, 196, 197, 200–202, 204, 207, 225,

227, 625
“Big inhale”, 417, 424, 426
Bits, 77
blkdump, see C functions, blkdump
BlkLoc, see Macros, BlkLoc
blkreq, see C functions, blkreq
BlkSize, see Macros, BlkSize
BlkType, see Macros, BlkType
Block size, 51, 82, 194, 205, 212, 217, 220, 228,

548, 595, 596, 598, 648, 655, 658, 659
Block titles, 51, 77, 82, 203–206, 208, 217, 218,

220, 229, 548, 623
Blocks

Table-element, 104, 106, 112, 237, 239,
243, 248, 551, 602

Trapped variable, 105, 106, 113, 237, 239,
243, 248, 555, 602, 621

Table-header, 100, 103, 105, 551, 602
Bounded expressions, 18, 135–137, 154, 164,

265, 268, 291, 295, 330, 333, 354, 365
Breathing room, 223, 229, see also Garbage col-

lection
bscan, see Virtual machine, Instruction, bscan
Buffer, 44, 61, 62, 66, 235, 236, 246, 247, 326,

351, 417–419, 458, 588, 590, 607, 660

C
C Frames, 154
C stack, 132, 154, 155, 160, 177, 178, 180,

181, 184, 198, 224, 225, 334, 555, 561–
564, 592, 605, 623, 665, 667

C stack overflow, 225, 605
C stack registers, 181
C state, 180, 181, 555, 649
C strings, 66, 589, 627, 645
C structures, 77, 138, 144, 262, 326, 387,

442, 448, 453
Programming language, 66, 474

C double, 326, 549, 632, 650
C functions

adjust, 219
cater, 68
hash, 106
scollect, 214
addmem, 604
alcblk, 602
alccoexp, 602
alcfile, 602
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alclint, 602
alclist, 602
alclstb, 602
alcreal, 602
alcrecd, 602
alcrefresh, 602
alcselem, 602
alcset, 602
alcstr, 70, 227, 590, 602
alcsubs, 602
alctable, 602
alctelem, 602
alctvtbl, 602
anycmp, 597, 600
asgn, 96, 123, 126, 559
blkdump, 605
blkreq, 602
cnv_cset, 233, 600
cnv_int, 233, 588, 600
cnv_real, 233, 601
cnv_str, 233, 236, 542, 543, 588, 601
cofree, 222
coswitch, 181, 182
cplist, 604
cvpos, 601
def_cset, 601
def_int, 601
deref, 329, 350, 357, 358, 407, 500, 605,

613
descr, 605
equiv, 597, 600
find, 12, 16, 136, 172, 287, 635
free, 199
getstr, 604
interp, 130, 147, 148, 152, 154–156, 181
lexcmp, 600
malloc, 197, 199, 263, 372, 457, 609, 611,

643, 650, 658
markblock, 224, 225, 229, 614, 624

memb, 604
mvc, 221
numcmp, 600
numeric, 11, 12, 233
order, 597
outimage, 597, 605, 613
postqual, 202, 224, 614
putstr, 604
qsort, 216, 664
qtos, 605
repl, 19, 170, 553
runerr, 62, 247, 448, 588, 592, 604, 606,

631, 633–635, 637, 639, 644
strprc, 601
strreq, 69, 602
sweep, 208, 223, 230
syserr, 592, 604, 606

C stack
downward-growing, 181, 184, 623
unwinding, 154, 156, 561–564
upward-growing, 181, 184, 623

cat, see Virtual machine, Instruction, cat
cater, see C functions, cater
ccase, see Virtual machine, Instruction, ccase
CDC Cyber, 39
Character sets, 10, 19
chfail, see Virtual machine, Instruction, chfail
ChkNull, see Macros, ChkNull
Circular Queue, 85, 97, 550
close, see Icon functions, close
CLU, 135
cnv_cset, see C functions, cnv_cset
cnv_int, see C functions, cnv_int
cnv_real, see C functions, cnv_real
cnv_str, see C functions, cnv_str
Co–expression, 11, 31–33, 36–38, 43, 49, 167,

177–184, 193, 197, 199–202, 207, 208,
222, 225, 228, 274, 303, 313, 314, 316,
317, 319, 320, 323, 517, 518, 522, 523,
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535, 555, 556, 560, 580, 602, 608, 611,
623, 643, 646, 648, 649, 659–661, 663,
674

activation, 32, 177–179, 181, 303, 313, 320,
323, 518, 580, 643, 648

refresh, 33, 208, 560
refresh block, 183, 208, 556, 560, 602

Co–expression blocks, 178–181, 184, 197, 199–
202, 207, 208, 222, 225, 228, 555, 560,
602, 623, 674

coact, see Virtual machine, Instruction, coact
cofail, see Virtual machine, Instruction, cofail
cofree, see C functions, cofree
Collating sequence, 620
Comparison operations, 11, 12, 16, 144, 287,

574
Comparison routines, 216, 599
Compilation, 6, 56, 261, 309, 386, 387, 411,

424, 508
conditional, 56, 261, 424
separate, 309, 411, 508

compl, see Virtual machine, Instruction, compl
Compound expressions, 18, 136, 137, 139, 268,

276, 323, 572
Computer architecture, 10, 40, 50, 167, 195
Constants, 58, 117, 597, 598
Context Switch, 178, 181, 184, 560
Control backtracking, 17, 18, 37, 137, 164, 263
Control Structures

until–do expression, 577
Control structures, 7, 8, 12, 14–18, 37, 38, 117,

135, 137, 139, 143, 156, 158–161, 165,
184, 258, 265, 275, 276, 289, 291, 296,
297, 322–324, 328, 346, 574, 576–579,
628

break expression, 14, 294, 299, 578
case clause, 15, 131, 347, 574, 597
case expression, 14, 15, 321, 340, 425, 427,

429, 574, 597

create expression, 31, 32, 178, 317, 319,
562, 580

every–do expression, 15–18, 29, 31, 160,
165, 267, 284, 289, 345, 353, 356, 522,
577, 586, 587, 622, 623

fail expression, 142, 143, 151, 165, 289–
292, 295, 297

if–then–else expression, 12, 13, 17, 18, 137,
139, 143, 305, 328, 353, 358, 573

next expression, 14, 623
not expression, 13, 136, 137, 160, 356, 487
repeat expression, 14
repeated alternation expressions, 17, 30, 158,

165, 575, 619, 622
return expression, 143, 176, 266, 328, 342,

353, 580, 610, 612, 613
suspend expression, 30, 580, 613
while–do expression, 13, 14, 137, 160, 161,

230, 577, 619, 625
Conversion, 231, 587, 600, 632
copy, see Icon functions, copy
coret, see Virtual machine, Instruction, coret
coswitch, see C functions, coswitch
cplist, see C functions, cplist
create, see Virtual machine, Instruction, create
cset, see Virtual machine, Instruction, cset
Cset blocks, 77, 559, 560, 602, 610
Cset literals, 43, 196, 425, 568, 630
CsetOff, see Macros, CsetOff
CsetPtr, see Macros, CsetPtr
Csets, 10, 18, 19, 24, 33, 43, 49, 64–66, 76, 77,

111, 112, 117, 196, 197, 232, 233, 235,
248, 278, 284, 306, 316, 326, 350–352,
389, 410, 416, 425, 541, 549, 559, 560,
568, 591, 599–602, 610, 627, 630–633,
635, 645, 667, 673

built-in, 19, 196
cvpos, see C functions, cvpos
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Data backtracking, 18, 22, 162
Data Objects, first-class, 10
Data type, 6, 10, 11, 38, 48–50, 58, 62, 81, 99,

111, 256, 257, 262, 279, 303, 427, 431,
447, 490, 519, 523, 535, 541, 548, 549,
583, 594–597, 648, 649, 661, 663–665

conversion of, 10, 24, 36, 42, 44, 47, 48, 62,
231–233, 235, 248, 284, 303–305, 349,
351, 362, 447, 452, 462, 588, 590, 600,
619, 625, 626, 631–633, 644

integer, 48, 50, 233, 262, 313, 317, 318,
610, 629, 632, 642

Dead objects, 193, 200
Debugging, 416, 605
DEC-10, 39
Declarations, 26, 585, 642
def_cset, see C functions, def_cset
def_int, see C functions, def_int
Default clause, 15, 631
Defaults, 601
Defined constant, 59, 588, 596, 598

CsetSize, 77, 598
IntBits, 56, 656
LogHuge, 598, 657
LogIntSize, 598
MaxCvtLen, 248, 588, 598, 626
MaxLong, 598, 658
MaxShort, 598
MaxStrLen, 598
MinListSlots, 83, 88, 598
MinLong, 598, 659
MinShort, 598
WordBits, 56, 668
WordSize, 595, 596, 598

delete, see Icon functions, delete
DeRef, see Macros, DeRef
deref, see C functions, deref
Dereferencing, 30, 37, 38, 53, 54, 56, 63, 71, 72,

79, 104–106, 112, 131, 170, 176, 177,

184, 231, 236–240, 243, 249, 269, 279,
304, 321, 325, 326, 328, 329, 349–351,
356–358, 407, 500, 563, 592, 608, 612,
613, 620, 621, 623, 629, 636, 640

descr, see C functions, descr
Descriptors, 48, 56, 62, 208, 227, 497, 547, 588,

629
d-word, 48–49, 49–51, 53, 59, 61, 95, 132,

202, 204, 207, 217, 218, 229, 231, 262,
547, 548, 548, 588, 594, 598, 599, 608–
610, 622, 623

null, 115–118, 127, 398, 560, 563, 569, 572,
574

tended, 202, 227, 249, 292, 326, 328, 329,
391, 398, 643

v-word, 48–49, 49–51, 53, 54, 57, 61, 62,
67, 131, 132, 202–204, 206, 207, 214,
217, 218, 236, 262, 547, 548, 548, 548,
548, 588, 592, 595, 598, 599, 608–610,
613, 622–624

Diagnostics, 33, 52, 231, 247, 249, 424, 605,
606, 665

diff, see Virtual machine, Instruction, diff
display, see Icon functions, display
div, see Virtual machine, Instruction, div
dup, see Virtual machine, Instruction, dup

EBCDIC, 620, 651
efail, see Virtual machine, Instruction, efail
Efficiency, 37
efp, see Expressions, frame pointer
einit, see Virtual machine, Instruction, einit
Elements, 23, 85, 92
Empty List, 22, 82, 98, 621
Empty Set, 100, 112, 284, 621
Empty String, 19
Empty Table, 103
equiv, see C functions, equiv
eqv, see Virtual machine, Instruction, eqv
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eret, see Virtual machine, Instruction, eret
Error checking, 62
Error Message, 11, 35, 62, 126, 415, 424, 445,

447, 562, 589, 592, 604, 630, 635, 637
Error termination, 44, 247, 410, 625, 639
escan, see Virtual machine, Instruction, escan
esusp, see Virtual machine, Instruction, esusp
Evaluation

goal-directed, see Goal-directed evaluation
Evaluation of expressions

black holes, 158, 165, 619, 622
Expressions, 14, 30, 71, 135, 158, 167, 276, 294,

328, 485, 572, 573
evaluation of, 6, 10–12, 16, 31, 35, 37, 40,

118, 135, 136, 141–143, 161, 165, 167,
184, 207, 572

evaluation order, 17, 487, 576
evaluation outcome, 15, 38
frame pointer (efp), 138, 139, 141, 144, 156,

176, 180, 181, 559, 562, 574
repeated alternation, 17, 30, 158, 165, 575,

619, 622
resumption of, 17, 31, 32, 154
to-by, 571
until-do, 577

Failure, 12, 13, 140, 142, 266, 594, 595
field, see Virtual machine, Instruction, field
Field Names, 25, 185, 186, 188–192, 480, 491
Field References, 51, 53, 185, 187, 188, 190–

192, 207, 318, 319, 480–482, 484, 488,
490, 491, 493, 494, 497, 498, 503, 628,
641

File, 245, 451, 457, 458, 472, 554, 583, 592
closing, 26
end of file, 13, 15, 26, 418, 419, 426, 444,

604
file status, 245, 246, 447, 554
Open options, 26

opening, 26, 426, 448, 449, 455
File Organization, 583
find, see C functions, find, see also Icon func-

tions, find
Flags, 50, 51, 54, 62, 231, 547, 547, 594, 613

n flag, 547
p flag, 547
t flag, 547
v flag, 547
n flag, 50, 62, 231, 547
p flag, 51
t flag, 54

FncDcl, 170
Frames, 137, 144, 154

expression, 137–142, 151, 154, 156, 159–
161, 164, 165, 177, 178, 559–562, 564,
572–578, 623

generator, 138, 144, 148, 149, 151, 154,
156, 157, 159–161, 164, 166, 177, 561–
563, 574

procedure, 175, 177, 181, 183, 184, 263,
264, 320, 326, 333–335, 411, 560, 563

free, see C functions, free
Free list, 199, 200
Free space, 70, 195, 198–200, 220, 223–225,

229, 602, 643
Functions, 7, 28, 36, 106, 128, 167, 168, 170,

396, 402, 441, 542, 583, 584, 590
built-in, 43, 44, 196, 274, 303, 304, 309,

311, 315, 317, 364, 411, 452, 518, 611,
628, 675

returning from, 265

Garbage collection, 200–228, 531–533
basis, 196, 197, 200–202, 204, 207, 225,

227, 625
compaction, 200, 203, 208, 212, 217, 218,

220, 229
location, 201–204, 206, 208, 212, 213, 216,
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222, 228, 607
mutex, 532
pointer adjustment, 212, 217, 229
thread, 532, 533

Generation, 311, 325, 341, 427, 431, 482, 487
Generative control structures, 16, 139, 156, 158,

574
Generator frame pointer, 138
Generators, 15–17, 29, 31, 37, 38, 41, 138, 143–

145, 147–149, 151, 154, 156–161, 164,
166, 177, 189, 258, 266, 287, 288, 291,
292, 294–299, 328, 330, 332–336, 339,
341, 351, 352, 355–357, 364, 424, 427,
482, 494, 497, 509, 510, 524, 525, 561–
563, 574, 577, 629

get, see Icon functions, get
GetReal, see Macros, GetReal
getstr, see C functions, getstr
gfp, 138, 139, 144, 151, 154, 176, 180, 181, 559,

562
global, see Virtual machine, Instruction, global
Global declarations, 28, 43, 416, 432
Global identifiers, 10, 30, 118, 197, 201, 228,

239, 559, 561, 567, 624
Goal-directed evaluation, 1, 15–17, 31, 37, 38,

135, 154, 161, 164, 253, 257, 258, 263–
265, 274, 287–291, 293, 295, 303, 322,
328, 340, 356

goto, see Virtual machine, Instruction, goto

hash, see C functions, hash
Hash computations, 52, 101, 102, 106, 106–112,

375, 621, 622
Hash lookup, 102
Hash number, 101–104, 106, 111, 113, 374, 381,

551, 552, 555, 599, 602, 604, 621
Header files, 387, 388, 448, 451–453, 525, 583,

593, 609, 666
Heap, 198, 235, 247, 279–281, 284, 285, 529–

533, 588, 606, 607, 650, 667, 674
private, 530, 531, 674
public, 530, 531

Heterogeneous structures, 10, 22, 24, 25, 36, 47,
62, 99, 112, 257, 369

Heuristics, 79, 352, 353, 411, 457
Human frailty, 592

IBM 370, 39
Icode, 41, 196, 437

files, 41, 42, 66, 67, 117, 138, 168, 191, 196,
239, 366, 567, 568

Region, 196, 197, 228, 239, 623, 624
Icon Directory structure, 584
Icon functions, 62, 184

close, 26, 246, 611
copy, 11
delete, 24
display, 34, 35, 247
find, 12, 13, 15, 16, 19–22, 287–289
get, 23, 480, 612
image, 33, 187, 227, 247, 248, 638
insert, 24, 102, 355, 357
left, 19, 171
list, 22, 33, 49, 82, 85
map, 20, 76, 79
member, 24, 394, 489, 602
move, 21, 22, 163, 268, 304
numeric, 12, 140, 141, 143, 171, 233
open, 26, 426, 448, 449, 455, 468
pop, 23, 91, 93, 161, 563
pull, 24
push, 23, 88, 96, 117
put, 23, 85, 96, 280, 494
read, 13, 17, 18, 26, 162, 165, 166, 184,

246, 249, 277, 281
reads, 247, 590
repl, 19, 170, 553
reverse, 19
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set, 24, 49, 140, 179, 551, 612
sort, 22
stop, 26, 586
string, 232, 233, 274, 590
tab, 21, 22, 362
table, 25, 49, 478
type, 11, 33, 235, 398, 497, 587, 589, 594,

597, 608–613, 615
upto, 19–21, 143, 144, 148, 154, 158
write, 11, 13, 19, 20, 25, 26, 28, 30, 33, 38,

53, 71, 104, 105, 113, 136, 145, 149,
153, 154, 156, 170, 184, 230, 247, 249,
267, 275, 289, 291, 345, 346, 530, 553,
586, 619

writes, 586
Identifier Values, displaying, 34
Identifiers, 7, 118, 119, 318, 567
Idol, 188, 371, 415, 422, 431, 436, 439, 451
ilevel, 138, 154, 156, 180, 559, 562
image, see Icon functions, image
Indirection

extra, 100
Infinite result sequence, 29, 274
init, see Virtual machine, Instruction, init
initial clause, 27, 520, 521, 528
Initialization routines, 44
Input, 25, 26, 245, 417, 441, 529, 604
insert, see Icon functions, insert
int, see Virtual machine, Instruction, int
Integer, 50, 117, 248, 262, 284, 389, 410, 429,

548, 632, 638
Integer literals, 42, 117, 497, 498, 568, 630
Integer sequence, 29
inter, see Virtual machine, Instruction, inter
InterLisp, 135
interp, see C functions, interp
Interpreter, 44, 114, 130, 132, 208, 366, 367
Interpreter frame pointers

argp, 175–177, 180, 181, 326, 391

efp, 138, 139, 141, 144, 156, 176, 180, 181,
559, 562, 574

ilevel, 138, 154, 156, 180, 559, 562
ipc, 130–132, 138, 140, 142, 144, 156, 158–

160, 176, 177, 179–181, 183, 559–562,
575, 576

pfp, 175, 180, 326
sp, 115, 116, 131, 132, 139, 141, 168, 170,

171, 180, 181, 208, 230, 601, 604
Interpreter level, 165, 622
Interpreter loop, 130, 131, 142, 181, 237, 364,

409
Interpreter stack, 115–116, 131, 132, 138, 144,

147–149, 153, 154, 156, 160, 172, 175–
178, 180, 181, 184, 198, 202, 207, 208,
230, 239, 247, 555, 559, 562, 567, 585,
591, 622, 623, 659, 665

Interpreter stack overflow, 622, 665
Interpreter state variables, 132, 144, 145, 154,

178, 180, 181, 517
argp, 175–177, 180, 181, 326, 391
efp, 138, 139, 141, 144, 156, 176, 180, 181,

559, 562, 574
ilevel, 138, 154, 156, 180, 559, 562
ipc, 130–132, 138, 140, 142, 144, 156, 158–

160, 176, 177, 179–181, 183, 559–562,
575, 576

pfp, 175, 180, 326
sp, 115, 116, 131, 132, 139, 141, 168, 170,

171, 180, 181, 208, 230, 601, 604
IntVal, see Macros, IntVal
Invocation expressions, 183
invoke, see Virtual machine, Instruction, invoke
IPL-V, 135
Iteration, 15, 160

keywd, see Virtual machine, Instruction, keywd
Keywords, 10, 19, 22, 33, 34, 54, 55, 56, 55–56,

63, 72, 77, 79, 161, 162, 165, 202, 236,
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239, 244, 294, 295, 303, 304, 306, 317,
318, 350, 365, 415, 431, 501, 528, 561,
568, 569, 592, 608, 612–614, 628–630,
636, 646, 649, 651

&ascii, 77, 549
&cset, 19, 62
&date, 568, 569
&fail, 165, 289–293, 295, 569, 623, 630
&input, 26, 245
&lcase, 19, 76
&level, 34
&main, 33, 177, 181, 201
&null, 10, 62, 176, 179, 362, 569, 636, 638
&output, 26, 246, 554
&pos, 22, 55, 56, 161–164, 166, 240, 317,

318, 425, 560, 561, 579, 628, 636
&random, 55, 318, 613, 636
&subject, 22, 55, 56, 161–164, 166, 201,

202, 245, 317, 318, 426, 431, 560, 561,
579, 636

&trace, 33, 54, 55, 247, 318, 563, 636
&ucase, 19, 76
built-in, 304

Large memory model, 49
lconcat, see Virtual machine, Instruction, lcon-

cat
left, see Icon functions, left
lexcmp, see C functions, lexcmp
lexeq, see Virtual machine, Instruction, lexeq
lexge, see Virtual machine, Instruction, lexge
lexgt, see Virtual machine, Instruction, lexgt
Lexical analysis, 19, 41, 42, 45, 309, 415, 416,

418, 420, 423, 424, 619, 629
lexle, see Virtual machine, Instruction, lexle
lexlt, see Virtual machine, Instruction, lexlt
lexne, see Virtual machine, Instruction, lexne
Library routines, 41, 43, 44, 199, 216, 245, 329,

583

limit, see Virtual machine, Instruction, limit
Limitation counter, 159, 160, 165, 562
line, see Virtual machine, Instruction, line
Linked lists, 66, 100–103, 105, 106, 223, 225,

551, 624
Linker, 1, 40–44, 117, 129, 168, 189–192, 196,

261, 302, 309, 567, 568, 593, 622, 624,
650, 656

LISP, 6, 10, 194
List

concatenation, 24
positional access, 10, 36, 97, 98
sections, 24
structures for, 81

list, see Icon functions, list
List–Element block, 82, 83, 85, 87–89, 92, 93,

97, 98, 202, 228–230, 550, 598, 602,
621, 625, 635

List–Header block, 81, 82, 87, 92, 93, 202, 550,
602, 621, 673

Live objects, 200, 228
llistn, see Virtual machine, Instruction, llistn
Loader, 41, 261, 535
Local identifier, 29, 32, 33, 53, 118, 119, 169,

170, 175, 176, 181, 183, 184, 202, 207,
237, 239, 247, 560, 562, 567, 602, 623

localn, see Virtual machine, Instruction, localn
Long/Large integer blocks, 51, 548, 602, 626
Long/Large integers, 51, 548, 658, 659
Lookup, 111
lsusp, see Virtual machine, Instruction, lsusp

Macro, 61, 76, 129, 131, 139, 142, 170, 173,
202, 212, 235, 240, 261, 386, 388, 390,
424, 425, 451, 452, 454, 455, 460, 462,
500, 528, 540–543, 583, 585, 589, 590,
593, 597, 598, 598, 598–599, 607, 610,
613, 614, 627, 647, 666

Arg, 598
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ArgType, 598
ArgVal, 598
BlkLoc, 61, 598
BlkSize, 212, 598
BlkType, 212, 599
ChkNull, 76, 599
CsetOff, 599
CsetPtr, 599
DeRef, 599
GetReal, 235, 599
IntVal, 61, 599
Max, 599
Min, 599
Mkint, 599
Pointer, 202, 614
Qual, 61, 599, 614
Setb, 599
SlotNum, 599
StrLen, 61, 107, 227, 589, 599
StrLoc, 107, 589, 599
Testb, 541, 599
Tvar, 599
TvarLoc, 599
Var, 599
VarLoc, 236, 500, 599
Vsizeof, 599
Vwsizeof, 599

main procedure, 181, 316, 321, 326, 330, 378
malloc, see C functions, malloc
map, see Icon functions, map
mapping, 73, 76, 279, 284, 285, 314, 437, 456,

476, 510
mark, see Virtual machine, Instruction, mark
mark0, see Virtual machine, Instruction, mark0
markblock, see C functions, markblock
Marking, 202, 203, 206, 208, 218, 225
matching, 6, 8, 21, 37, 104–106, 135, 161, 164,

425
Max, see Macros, Max

memb, see C functions, memb
member, see Icon functions, member
Memory layout, 195
Memory regions, 195, 528, 643
Min, see Macros, Min
minus, see Virtual machine, Instruction, minus
Mkint, see Macros, Mkint
mod, see Virtual machine, Instruction, mod
move, see Icon functions, move
mult, see Virtual machine, Instruction, mult
Mutual evaluation, 31, 128, 165, 167, 168, 572,

622
Mutual exclusion, 223, 518, 547, 561
mvc, see C functions, mvc

neg, see Virtual machine, Instruction, neg
neqv, see Virtual machine, Instruction, neqv
nonnull, see Virtual machine, Instruction, non-

null
noop, see Virtual machine, Instruction, noop
null, see Virtual machine, Instruction, null
Null Character, 65, 633
Null Descriptor, 115–118, 127, 398, 560, 563,

569, 572, 574
Null value, 10, 13, 14, 30, 50, 76, 85, 116, 118,

171, 176, 179, 181, 262, 272, 305, 314,
320, 355, 411, 526, 547, 548, 574, 579,
636, 643

number, see Virtual machine, Instruction, num-
ber

numcmp, see C functions, numcmp
numeq, see Virtual machine, Instruction, numeq
numeric, see C functions, numeric, see also Icon

functions, numeric
numge, see Virtual machine, Instruction, numge
numgt, see Virtual machine, Instruction, numgt
numle, see Virtual machine, Instruction, numle
numlt, see Virtual machine, Instruction, numlt
numne, see Virtual machine, Instruction, numne
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Offset, 500, 599
open, see Icon functions, open
Operators, 126, 184, 523, 569

built-in, 196, 304, 628, 675
order, see C functions, order
outimage, see C functions, outimage
Output, 25, 245, 529, 604

Parameters
variable number, 427

Pascal, 12, 264, 287
Pattern matching, 6–8, 37, 135, 161, 164
PDP-11, xvii, 39, 417
Performance, 253, 361, 409, 426, 500
pfail, see Virtual machine, Instruction, pfail
pfp, 175, 180, 326
Pipes, 245, 529, 535, 554, 661–663
PL/I, 12
plus, see Virtual machine, Instruction, plus
pnull, see Virtual machine, Instruction, pnull
Pointer, see Macros, Pointer
Pointer loops, 36, 202, 206, 228
Polymorphic operations, 234
pop, see Icon functions, pop, see Virtual ma-

chine, Instruction, pop
Positions in strings, 19
postqual, see C functions, postqual
power, see Virtual machine, Instruction, power
Predictive need, 225–227, 229, 247, 590–592,

625
pret, see Virtual machine, Instruction, pret
Prime number, 524, 525
Procedure blocks, 43, 169, 170, 172, 176, 185,

196, 247, 306, 325, 552, 553, 556, 585,
624

Procedure calls, 27, 30, 34, 38, 118, 143, 176,
177, 193, 247, 313, 320, 332, 333, 335,
535, 541, 563, 623

Procedure declarations, 26–28, 43, 118, 169,

175, 248, 552
Procedures, 10, 26, 28, 29, 36, 167, 168, 175,

177, 184, 247, 256, 311, 319, 349, 388,
389, 552, 580

as generators, 29
as values, 28
computed, 28
main procedure, 181, 316, 321, 326, 330,

378
returning from, 176, 181
suspending from, 29, 30, 320, 323, 325,

332, 390, 623
Prolog, 6, 135, 263, 265, 293, 340
psusp, see Virtual machine, Instruction, psusp
pull, see Icon functions, pull
push, see Icon functions, push
push1, see Virtual machine, Instruction, push1
pushn1, see Virtual machine, Instruction, pushn1
put, see Icon functions, put
putstr, see C functions, putstr
Python, 1

qsort, see C functions, qsort
qtos, see C functions, qtos
Qual, see Macros, Qual
Qualifiers, 49, 50, 61–63, 66, 67, 70–72, 78,

169, 197, 202, 203, 212–214, 224, 228,
231, 547, 554, 588, 589, 599–602, 605,
620, 624, 651, 659, 663–665

Queue access, 36, 81, 85, 98, 524
quit, see Virtual machine, Instruction, quit

random, see Virtual machine, Instruction, ran-
dom

Random number, 370, 662
seed, 662

rasgn, see Virtual machine, Instruction, rasgn
Ratfor, 8, 39, 194
Rational number, 594, 596, 597
rcv, see Virtual machine, Instruction, rcv
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rcvbk, see Virtual machine, Instruction, rcvbk
read, 26, 246, 273, 277, 424, 446
read, see Icon functions, read
Reading Data, 246
reads, see Icon functions, reads
real, see Virtual machine, Instruction, real
Real literals, 43, 196, 568
Real number, 10, 12, 49, 117, 126, 232, 233,

549, 559, 564, 599, 601, 663
Real-number block, 602
Reclaiming space, 229, 620
Record Blocks, 51, 57
Records, 10, 25, 43, 47, 49, 51–53, 57, 71, 83,

185–192, 197, 203–207, 218, 219, 237,
309, 311, 315–318, 369, 370, 372, 416,
420, 423, 427, 431, 432, 434, 435, 447,
480–484, 488–491, 493, 494, 505, 507,
524, 548, 561, 602, 611, 621, 628, 635,
639, 641, 645, 660, 674

Constructor, 185, 186, 205, 219, 309, 311,
315, 317, 628, 641

Declaration, 43, 51, 190, 192, 203, 315, 317,
483, 489

Recursion, 225, 624
Recursive calls, 28, 225, 320
referencing, 188, 257, 640, 641, 646
refresh, see Virtual machine, Instruction, refresh
Region expansion, 229
Relocation, 199, 201, 208, 611, 624, 625, 643,

644
Repeated alternation expressions, 17, 30, 158,

165, 575, 619, 622
repl, see C functions, repl, see Icon functions,

repl
Reserved words, 303, 304, 417, 421, 430, 431,

518, 585, 644
Results, 262, 399, 494, 498, 500
reverse, see Icon functions, reverse
Reversible assignment, 18

Reversible swap, 292
rswap, see Virtual machine, Instruction, rswap
RTL, xvii, 60, 61, 68, 73, 91, 142, 146, 147, 173,

195, 231, 234, 235, 240, 244, 447, 452,
458, 472, 473, 583, 585, 586, 588, 589,
592, 593, 601, 604, 608–611, 627

Run-time language, see RTL
Run-time support operations, 303, 325, 352,

410, 627, 631
Run-time system, 1, 6, 40–44, 47, 60, 66, 78,

195, 196, 201, 204, 227, 229, 231, 245,
248, 253, 255, 258, 262, 263, 301–303,
307, 350, 364, 366, 390, 411, 455, 583,
585, 593, 598, 599, 608, 622, 624, 627,
632

runerr, see C functions, runerr

sbrk, 194, 195, 197
scalar, 248
Scanning, 21, 37, 161, 579
Scanning expressions, 22, 162, 164
scollect, see C functions, scollect
sdup, see Virtual machine, Instruction, sdup
sect, see Virtual machine, Instruction, sect
Semi-colon insertion, 42, 45, 417, 418
Set, 10, 19, 24, 99, 101, 103, 106, 112, 135, 604,

621
lookup, 103, 112
members, 99, 100, 103, 313

set, see Icon functions, set
Set-element blocks, 100–102, 551, 602, 604
Set-header blocks, 100, 102, 551, 602, 621, 673
Setb, see Macros, Setb
SETL, 6, 99, 135
Side effects, 358
size, see Virtual machine, Instruction, size
SL5, 8, 39, 99
SlotNum, see Macros, SlotNum
Slots, 82, 83, 85, 88, 93, 98, 100–104, 106, 111,
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189, 426, 510, 551, 552, 598, 599, 607,
621, 656–658

SNOBOL programming languages, 7–8
SNOBOL4, 6–8, 39, 40, 99, 135, 140, 194
sort, see Icon functions, sort
Sorting, 22, 83, 213, 216, 504, 505, 597, 600,

620
sp, 115, 116, 131, 132, 139, 141, 168, 170, 171,

180, 181, 208, 230, 601, 604
Stack access, 81, 85, 98
Stack-based evaluation, 115
static, see Virtual machine, Instruction, static
Static Identifier, 10, 27, 30, 53, 118, 169, 170,

197, 201, 207, 228, 559, 564, 567, 623,
624

Static region, 197, 199, 200, 225, 643, 659
Static Variable, 225, 319–321, 323, 418, 520,

528, 535
stop, see Icon functions, stop
Storage allocation, 198
Storage fragmentation, 98, 184, 198, 199, 625
Storage management, 10, 193, 227
Storage overhead, 106, 194, 512
Storage throughput, 230, 625
str, see Virtual machine, Instruction, str
string, see Icon functions, string
String Invocation, 184, 304, 317, 366, 624, 662
String Region, 66–70, 79, 197, 199, 200, 202,

203, 212–214, 216, 224, 229, 247, 249,
590, 596, 602, 609, 610, 614, 643, 644,
658, 659, 666

String scanning, 21, 37, 38, 44, 161, 164, 166,
420, 425, 431, 579, 628

position, 21, 22, 37, 173
subject, 21, 22, 37, 173

Strings, 5, 7, 10–13, 16, 18–22, 26–29, 33, 35–
38, 43, 44, 47, 49, 50, 53–55, 57, 61–63,
78, 65–78, 78, 79, 105–107, 111, 113,
117, 118, 132, 161, 162, 164, 166, 169,

173, 184, 185, 192–200, 202, 203, 212–
214, 216, 223–225, 227–229, 231–233,
235–237, 245–249, 262, 271–274, 277–
281, 284, 285, 303–306, 316–318, 326,
352, 359, 360, 366, 372, 389, 391–393,
397, 398, 416–420, 425, 426, 429, 431,
437, 438, 456, 457, 460–462, 464, 465,
468–470, 472, 477, 497, 503, 530, 547,
547, 548, 554, 559, 560, 564, 568, 579,
584, 588–590, 596–602, 605, 609, 610,
614, 620–622, 624–628, 630–635, 638,
643–646, 649, 651, 655, 658, 659, 662–
664, 666, 667, 674, 675

concatenation, 19, 22, 67, 68, 71, 237, 247,
359, 590, 630

hashing, 106, 111, 113
images, 33, 227, 596
length, 27, 49, 50, 65, 66, 71, 73, 78, 111,

132, 262, 547, 599, 622, 632, 646
literals, 303, 398, 425, 429, 568, 627, 628,

630
representation of, 49, 62, 66, 78, 194, 227,

247, 248, 658
substring concatenation, 22

StrLen, see Macros, StrLen
StrLoc, see Macros, StrLoc
strprc, see C functions, strprc
strreq, see C functions, strreq
Structures, 10, 16, 23, 36, 43, 81, 85, 156, 297,

453, 547, 574, 594, 602
subsc, see Virtual machine, Instruction, subsc
Subscripting, 19, 22, 37, 38, 71–73, 79, 93, 112,

188, 237, 239, 279, 570, 597, 620, 621
Substring, 11, 12, 16, 19–22, 36, 37, 54, 55, 57,

58, 65, 66, 70–72, 78, 79, 105, 111, 237,
240, 249, 317–319, 548, 554, 602, 620,
636, 639, 641, 644, 646

Substring Trapped variable, 57, 58, 72, 79, 105,
237, 240, 249, 317–319, 554, 602, 620,
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636, 639, 641, 646
Substring Trapped variable block, 57, 58, 72,

554, 555, 602
Success, 12, 341, 353
Support routines, 44, 590
Suspend, 155
Suspended procedures, 29, 145, 177, 325, 333,

341
Suspension, 200, 237, 333, 353, 622, 623
swap, 292, 629
swap, see Virtual machine, Instruction, swap
sweep, see C functions, sweep
Syntax errors, 415, 424
syserr, see C functions, syserr
System stack, 177, 198

tab, see Icon functions, tab
table, see Icon functions, table
Table-element

Trapped variable, 105, 106, 113, 237, 239,
243, 248, 318, 319, 554, 555, 602, 621,
636, 639, 641

Tables, 10, 24, 25, 36, 99, 103, 188, 381, 391,
525, 526, 533, 551, 640, 641

assigned values, 99, 103–106, 237, 239,
551, 552, 555

creation, 25, 394
default assigned values, 99, 105, 113, 621,

641
empty, 103
entry value, 104, 106, 112, 555
lookup, 103, 112, 440
referencing, 104, 105, 112, 318, 319
size, 25, 191

tabmat, see Virtual machine, Instruction, tabmat
Temporary variable lifetime, 257, 263, 287
Temporary variable model, 257, 263, 276, 287,

292
Tended Descriptor, 202, 249, 292, 326, 328,

329, 391, 398, 643
Termination routines, 44
Testb, see Macros, Testb
Thrashing, 223, 229
Titles, block, see Block titles
toby, see Virtual machine, Instruction, toby
Trace messages, 33, 34, 247, 248
Tracing, 33, 247, 597, 609, 612, 651, 655, 667
Translator, 41, 415, 427

Icon, 40, 47, 62, 136, 255, 415, 473, 488,
567

RTL, xvii
Unicon, xvii, 1, 187, 415, 427, 431, 433,

434, 473, 474
Transmission operations, 32, 178–180, 580
Trapped variable, 54, 55, 57, 58, 63, 72, 78, 79,

105, 106, 113, 206, 207, 217, 237–240,
243, 248, 249, 317–319, 547, 548, 554,
555, 599, 602, 620, 621, 636, 639, 641,
646

Tvar, see Macros, Tvar
TvarLoc, see Macros, TvarLoc
type, see Icon functions, type
Type checking, 10, 11, 36, 40, 44, 47, 48, 62,

231, 231–232, 232, 255–257, 271, 272,
303–306, 349, 350, 352, 353, 362, 363,
409, 440, 452, 608, 619, 625, 630, 631,
633, 634, 642, 644

Type codes, 49–51, 55, 58–62, 77, 194, 204,
205, 208, 212, 217, 218, 220, 222, 227,
228, 231, 547–549, 588, 594, 595, 599,
608, 610, 612, 613, 620, 623, 624, 651

Type conversions, 10, 36, 62, 232–236, 248,
271, 302–305, 349, 351, 352, 447, 462,
588, 600, 619, 633, 642

Type declarations, 10, 36, 47, 62, 427
typedefs, 56, 442, 443, 452, 593, 610, 642, 649,

657, 662
Types, see Data types
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Ucode, 40, 41
Unicon

extra fields, 187, 188, 493, 494, 547
Unicon Directory structure, 584
unions, see Virtual machine, Instruction, unions
UNIX, 39, 194, 246, 265, 366, 400, 417, 441–

444, 448, 452, 505, 583, 649, 666, 667
unmark, see Virtual machine, Instruction, un-

mark
upto, see Icon functions, upto

value, see Virtual machine, Instruction, value
Values, 34, 36, 46, 278, 287, 389, 547–548, 589,

643
Values, first-class, 62, 315, 316, 349, 636
Var, see Macros, Var
var, see Virtual machine, Instruction, var
Variable, 36, 46, 52–55, 132, 271, 278, 280, 294,

429, 500, 521, 548, 554, 642
C variable, 326, 535, 592
class variable, 433
condition variable, 518, 521, 522, 532, 533,

674, 675
environment variable, 198, 425, 437, 503,

605, 607, 656, 659, 660, 663, 666
global variable, 70, 256, 275, 309, 311, 314,

318, 320, 321, 362, 390, 416, 418–420,
422, 425, 432, 490, 520, 527, 593, 613,
636, 638

keyword variable, 54–56, 63, 236, 239, 244,
317, 318, 613, 646

list variable, 370
local variable, 225, 263, 266, 309, 318–321,

325, 328, 329, 386, 454, 521, 636
loop control variable, 392, 393, 397, 405
named variable, 278, 284, 311, 314, 324,

357–359, 391, 392, 638
procedure variable, 309, 325
register variable, 326

special variable, 642
static variable, 319–321, 323, 418, 520, 528
structure variable, 278, 284, 314
subscripted variable, 71, 237
temporary variable, 253, 257, 258, 263, 276,

278, 279, 284, 288–290, 314, 326, 328,
335–340, 356, 369, 391, 392, 409, 411,
480, 487

tended variable, 195, 243, 340
thread–local variable, 76
undeclared variable, 309, 411
variable descriptor, 53, 54, 119, 123, 206,

207, 217, 238, 386, 548, 559, 561, 562,
564, 567, 599

Variable Descriptor, 53, 54, 119, 123, 206, 207,
217, 238, 386, 548, 559, 561, 562, 564,
567, 599

Variables
operations on, 53, 54
Table-element trapped variables, 105, 239,

243, 318, 319, 554, 636, 641
VarLoc, see Macros, VarLoc
VAX, 181
Virtual machine, xvii, 1, 40, 41, 44, 115–117,

119, 123, 126–133, 138–143, 145, 147,
156, 158–161, 165–168, 176, 178, 179,
196, 247, 253, 255, 263, 264, 425, 427,
431, 432, 456, 471, 517, 518, 527, 528,
530, 532, 535, 540–543, 559, 567–569,
571, 583, 620, 622

Instruction, 40, 41, 44, 115, 116, 116, 117,
119, 123, 126–128, 130–132, 138–143,
145, 147, 156, 158–161, 165, 166, 168,
176, 178, 247, 255, 456, 532, 541, 559,
559, 568, 569, 571, 583, 620, 622

acset, 559, 560
aglobal, 559, 561
agoto, 559, 561
amark, 559
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apply, 559
areal, 559, 564
arg, 559, 568, 589
asgn, 96, 123, 126, 559, 570, 580
astatic, 559, 564
astr, 559, 564
bang, 559, 640
bscan, 162, 163, 560, 561, 579, 580
cat, 560
ccase, 560, 574
chfail, 159, 560, 575, 576
coact, 179, 181, 560
cofail, 178, 560, 580, 582
compl, 560
coret, 178, 179, 181, 560, 580, 582
create, 129, 560, 562, 580, 582
cset, 117, 559, 560, 568
diff, 560
div, 560
dup, 127, 560, 569–571, 579
efail, 142, 143, 150, 152, 158, 159, 161,

177, 178, 561, 569, 574, 577, 578, 580,
582

einit, 561
eqv, 561, 574
eret, 561, 574
escan, 162–164, 561, 579, 580
esusp, 156–159, 561, 574–578
field, 561
global, 118, 559, 561, 567
goto, 561, 573, 575–579, 582
init, 448, 561, 606, 613
int, 116, 117, 131, 561, 568
inter, 561
invoke, 128, 561, 572
keywd, 561, 569
lconcat, 561
lexeq, 561
lexge, 562

lexgt, 562
lexle, 562
lexlt, 562
lexne, 562
limit, 562, 576
line, 562
llistn, 562
localn, 562
lsusp, 159, 562, 576
mark, 66, 138, 139, 156, 208, 336, 338,

452, 519, 562, 573–580, 582, 673
mark0, 159, 562, 573, 574, 576–580
minus, i, 562
mod, 562
mult, 562
neg, 562
neqv, 562
nonnull, 562
noop, 563
null, 115–118, 127, 560, 563, 569, 572,

574, 579
number, 126, 131, 559, 560, 562–564,

571, 572
numeq, 149, 152, 153, 563
numge, 563
numgt, 563
numle, 563
numlt, 563
numne, 563
pfail, 143, 176, 247, 275, 276, 563, 580
plus, 131, 563, 569–571
pnull, 116, 117, 127, 563, 569–572, 574,

580
pop, 115, 563, 573, 577, 578, 582
power, 106, 143, 255, 373, 563
pret, 176, 177, 184, 247, 563, 580
psusp, 176, 184, 247, 563, 580
push1, 563, 571
pushn1, 563, 572
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quit, 563
random, 116, 118, 126, 564
rasgn, 564
rcv, 564
rcvbk, 564
real, 117, 126, 559, 564, 568
refresh, 560, 564
rswap, 564, 629
sdup, 564, 579, 580
sect, 477, 478, 481, 482, 488, 494, 500,

501, 503–505, 508, 510, 564, 571
size, 119, 564, 569
static, 118, 559, 564, 567
str, 117, 129, 132, 235, 396, 397, 504,

564, 568, 622, 673
subsc, 564, 570
swap, 564
tabmat, 564
toby, 146–149, 151–155, 564, 571
unions, 388, 564
unmark, 139, 154–156, 564, 573, 574,

576–579
value, 116, 119, 123, 128, 131, 564, 567,

568, 572, 574, 576, 579
var, 433, 565, 590, 611, 612, 615, 658

Self Modifying Instruction, 129–130, 527,
528

Virtual Memory, 403
Vsizeof, see Macros, Vsizeof
Vwsizeof, see Macros, Vwsizeof

Microsoft Windows, 442, 447, 451–454, 471,
472, 528, 651, 659, 662, 664, 667, 668

X Windows, 442, 452, 457, 659
write, see Icon functions, write
writes, see Icon functions, writes
Writing Data, 246

XPL, 194

Yacc, 39, 41, 261, 668, 669
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