Source file iterfncs.icn
############################################################################
#
#	File:     iterfncs.icn
#
#	Subject:  Procedures for recursive functions using iteration
#
#	Author:   Ralph E. Griswold
#
#	Date:     May 2, 2001
#
############################################################################
#
#   This file is in the public domain.
#
############################################################################
#
#  These procedures implement commonly referenced ``text-book''
#  recursively defined functions, but using iteration.
#
#	acker(i, j)	  Ackermann's function
#	fib(i, j)	  Generalized Fibonacci (Lucas) sequence
#
############################################################################
#
#  See also:  fastfncs.icn, memrfncs.icn, and recrfncs.icn
#
############################################################################

procedure acker(i, j)
   local k, value, place

   if i = 0 then return j + 1

   value := list(i + 1)
   place := list(i + 1)

   value[1] := 1
   place[1] := 0

   repeat {				# new value[1]
      value[1] +:= 1
      place[1] +:= 1
      every k := 1 to i do {		# propagate value
         if place[k] = 1 then {		# initiate new level
            value[k + 1] := value[1]
            place[k + 1] := 0
            if k ~= i then break next
            }
         else {
            if place[k] = value[k + 1] then {
               value[k + 1] := value[1]
               place[k + 1] +:= 1
               }
            else break next
            }
         }
         if place[i + 1] = j then return value[1]	# check for end
      }

end

procedure fib(i, m)			# generalized Fibonacci sequence
   local j, n, k

   /m := 0

   if i = 1 then return 1
   if i = 2 then return m + 1

   j := 1
   k := m + 1

   every 1 to i - 2 do {
      n := j + k
      j := k
      k := n
      }

   return n

end

This page produced by UniDoc on 2021/04/15 @ 23:59:45.