Source file intpdco.icn
############################################################################
#
#	File:     intpdco.icn
#
#	Subject:  Procedures for programmer-defined control operations
#
#	Authors:  Ralph E. Griswold and Robert J. Alexander
#
#	Date:     August 14, 1996
#
############################################################################
#
#   This file is in the public domain.
#
############################################################################
#  
#  These procedures use co-expressions to perform operations on
#  integer sequences.
#
#	Compl{e}	   produces the integers not in e
#
#	Delta{e, i}	   produces the difference of values in e by
#			   i places	  
#
#	Selfrepl{e, j}	   produces i * j copies of i, where i is from
#			   e1
#
#	Sumlimit{e, i, j}  produces values of e until their sum exceeds
#			   i.  Values less than j are discarded.
#  
############################################################################
#
#  Requires:  co-expressions
#
############################################################################

procedure Compl(L)	#: PDCO to generate integers not in sequence
   local i, j

   j := 1

   while i := @L[1] do {
      i := integer(i) | stop("*** invalid value in sequence to Compl{}")
      suspend j to i - 1
      j := i + 1
      }

   suspend seq(j)

end

procedure Delta(L)	#: PDCO to generate differences in sequences 
   local C, i

   C := ^L[1]
   every 1 to @L[2] do @C

   while i := @C - @L[1] do
     suspend i

end

procedure Selfrepl(L)	#: PDCO to produce multiple of values in sequence
   local i, j

   j := @L[2] | 1
   j := integer(j) | stop("*** invalid second argument to Selfrepl{}")

   while i := @L[1] do {
      i := integer(i) | stop("*** invalid value in Selfrepl{}")
      suspend (1 to i * j) & i
      }

end

procedure Sumlimit(L) 	#: PDCO to sum sequence to a limit
   local sum, min, limit, i

   limit := integer(@L[2]) | 2 ^ 31
   min := integer(@L[3]) | 0
   sum := 0

   while i := @L[1] do {
      if i < min then next
      if (sum + i) > limit then fail
      sum +:= i
      suspend i
      }

end

This page produced by UniDoc on 2021/04/15 @ 23:59:45.