Source file heap.icn
#<p>
#  This file provides a class definition for a "Heap" - a priority
#  queue implemented as a dense binary tree.  The algorithms for
#  manipulating the Heap are taken from code written by Kazimir
#  Majorinc.
#</p>
#<p>
#  A hallmark of this implementation is the flexibility - virtually
#  any definition of "priority" may be used to define the ordering
#  within the queue.
#</p>
#<p>
#  Author: Steve Wampler (sbw@tapestry.tucson.az.us)
#</p>
#<p>
#  <i>This file is in the public domain.</i>
#</p>



#<p>
#  The collection package provides advanced data structures.
#</p>
package collection

import lang
import util

#<p>
#   A Heap is a dense binary tree ordered as a <i>priority queue</i>.
#   The priority order is from lowest to highest priority where the
#   priority of two elements can be compared through the results
#   of invoking the operation <i>f</i> on each.  The priority operation
#   <i>p</i> defaults to "<" but can be any binary comparison operation.
#</p>
#<p>
#   Both f and p may be any of lang::Closure, procedure, function,
#   integer, or string-invocation symbol.  f is invoked with a single
#   argument (a heap element) and p is invoked to compare the results
#   of two calls to f.
#</p>
class Heap : Object (L, f, p)

   #<p>
   #   <[generates the heap elements(non-destructively) in order]>
   #</p>
   method gen()
      local temp := Heap(,f,p)
      temp.L := ::copy(L)
      suspend |temp.get()
   end

   #<p>
   #   <[returns the number of heap elements]>
   #</p>
   method size()
      return *L
   end

   #<p>
   #   <[returns the top of the heap (non-destructively)]>
   #</p>
   method top()
      return L[1]
   end

   #<p>
   #   <[return the next heap element (destructively, in order)]>
   #</p>
   method get()
      local up, down, result
      static call
      initial call := invokeFcn
      if *L > 0 then {
         L[up:=1] :=: L[-1]
	 result := ::pull(L)
	 while (down := 2*up) <= *L do {
	    if call(p,call(f,L[down+1]), call(f,L[down])) then down +:= 1
	    if call(p,call(f,L[down]),call(f,L[up])) then L[up]:=:L[down]
	    up := down
	    }
	 return result
	 }
   end

   #<p>
   #   Add a new element to the heap.
   #   <[returns <tt>a</tt>]>
   #</p>
   method add(a   # element to add
              )
      local i
      static call
      initial call := invokeFcn
      ::put(L,a)
      i := *L
      while call(p,call(f,L[i]), call(f,L[i/2])) do {
	 L[i] :=: L[i/2]
	 i /:= 2
	 }
      return a
   end

#<p>
# Construct a Heap.
#   <[param S optional list of initial values to insert into heap]>
#   <[param fVal a <tt>lang::Closure</tt>, procedure, integer, or
#           string-invocation to use in comparisons.  When needed,
#           the operation is invoked with a single argument that is
#           a heap element.  Defaults to 1 [i.e. the identity operation]]>
#   <[param pVal a <tt>lang::Closure</tt>, procedure, integer, or
#           string-invocation implementing a comparison operation
#           on the results of invoking fVal on two Heap elements.
#           Defaults to "<"]>
#</p>
initially (S, fVal, pVal)
   L := []
   f := \fVal | 1
   p := \pVal | "<"
   every self.add(!\S)
end

This page produced by UniDoc on 2021/04/15 @ 23:59:43.