Source file cartog.icn
############################################################################
#
#	File:     cartog.icn
#
#	Subject:  Procedures for cartographic projection 
#
#	Authors:  Gregg M. Townsend and William S. Evans
#
#	Date:     May 24, 2000
#
############################################################################
#
#   This file is in the public domain.
#
############################################################################
#
#	These procedures project geographic coordinates.
#
#	rectp(x1, y1, x2, y2, xm, ym) defines a rectangular projection.
#	pptrans(L1, L2) defines a planar projective transformation.
#	utm(a, f) defines a latitude/longitude to UTM projection.
#
#	project(p, L) projects a list of coordinates.
#	invp(p) returns the inverse of projection p.
#	compose(p1, p2, ...) creates a composite projection.
#
############################################################################
#
#	rectp(x1, y1, x2, y2, xm, ym) returns a rectangular projection
#	in which the point (x1, y1) maps to (x2, y2).  If xm is specified,
#	distances in the projected coordinate system are scaled by xm.  If
#	ym is also specifed, xm scales x values while ym scales y values.
#
############################################################################
#
#	pptrans(L1, L2) returns a planar projective transform that maps
#	the four points in L1 to the four points in L2.  Each of the two
#	lists contains 8 coordinates: [x1, y1, x2, y2, x3, y3, x4, y4].
#
############################################################################
#
#	utm(a, f) returns a projection from latitude and longitude to
#	Universal Transverse Mercator (UTM) representation.  The reference
#	ellipsoid is specified by a, the equatorial radius in metres, and f,
#	the flattening.  Alternatively, f can be omitted with a specifying
#	a string, such as "Clarke66"; if a is also omitted, "WGS84" is used.
#	See ellipsoid() in geodat.icn for the list of possible strings.
#
#	The input list contains signed numeric values: longitude and
#	latitude, in degrees, in that order (x before y).  The output list
#	contains triples: an integer zone number followed by real-valued
#	UTM x and y distances in metres.  No "false easting" is applied.
#
############################################################################
#
#	project(p, L) applies a projection, reading a list of coordinates
#	and returning a new list of transformed coordinates.
#
############################################################################
#
#	invp(p) returns the inverse of projection p, or fails if no
#	inverse projection is available.
#
############################################################################
#
#	compose(p1, p2, ..., pn) returns the projection that is the
#	composition of the projections p1, p2, ..., pn.  The composition
#	applies pn first.
#
############################################################################
#
#	UTM conversion algorithms are based on:
#
#		Map Projections: A Working Manual
#		John P. Snyder
#		U.S. Geological Survey Professional Paper 1395
#		Washington: Superintendent of Documents, 1987
#
#	Planar projective transformation calculations come from:
#
#		Computing Plane Projective Transformations (Method 1)
#		Andrew Zisserman, Robotics Research Group, Oxford
#		in CVOnline (R. Fisher, ed.), found 22 February 2000 at:
#	http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/EPSRC_SSAZ/node11.html
#
############################################################################
#
#   Links: geodat, io, lu, numbers, strings
#
############################################################################



link geodat
link io
link lu
link numbers
link strings



#  Procedures and globals named with a "ctg_" prefix are 
#  not intended for access outside this file.

global ctg_eps_ptab		# table of [axis, flatng], keyed by eps name



####################  General Projection Support  ####################



#  project(p, L) projects a list of coordinates, returning a new list.

procedure project(p, L)			#: project a list of coordinates
   return p.proj(p, L)
end



#  invp(p) returns the inverse of projection p.

procedure invp(p)			#: return inversion of projection
   return (\p.inv)(p)
end




####################  Rectangular Projection  ####################



record ctg_rect(	# rectangular projection record
   proj,		# projection procedure
   inv,			# inversion procedure
   xmul,		# x multiplier 
   ymul,		# y multiplier
   xadd,		# x additive factor
   yadd			# y additive factor
   )



#  rectp(x1, y1, x2, y2, xm, ym) -- define rectangular projection

procedure rectp(x1, y1, x2, y2, xm, ym)	#: define rectangular projection
   local p

   /xm := 1.0
   /ym := xm
   p := ctg_rect()
   p.proj := ctg_rect_proj
   p.inv := ctg_rect_inv
   p.xmul := real(xm)
   p.ymul := real(ym)
   p.xadd := x2 - x1 * xm
   p.yadd := y2 - y1 * ym
   return p
end



#  ctg_rect_proj(p, L) -- project using rectangular projection

procedure ctg_rect_proj(p, L)
   local i, a, xmul, ymul, xadd, yadd

   a := list()
   xmul := p.xmul
   ymul := p.ymul
   xadd := p.xadd
   yadd := p.yadd
   every i := 1 to *L by 2 do {
      put(a, xmul * L[i] + xadd)
      put(a, ymul * L[i+1] + yadd)
      }
   return a
end



#  ctg_rect_inv(p) -- invert rectangular projection

procedure ctg_rect_inv(p)
   local q

   q := copy(p)
   q.xmul := 1.0 / p.xmul
   q.ymul := 1.0 / p.ymul
   q.xadd := -p.xadd / p.xmul
   q.yadd := -p.yadd / p.ymul
   return q
end



################  Planar Projective Transformation  ###############



record ctg_ppt(		# planar projective transformation record
   proj,		# projection procedure
   inv,			# inversion procedure
   org,			# origin points
   tgt,			# target points
   h11, h12, h13,	# transformation matrix: (x' y' 1) = H (x y 1)
   h21, h22, h23,
   h31, h32, h33
   )



#  pptrans(L1, L2) -- define planar projective transformation 

procedure pptrans(L1, L2)	#: define planar projective transformation
   local p, M, I, B
   local x1, x2, x3, x4, y1, y2, y3, y4
   local x1p, x2p, x3p, x4p, y1p, y2p, y3p, y4p

   *L1 = 8 | runerr(205, L1)
   *L2 = 8 | runerr(205, L2)

   p := ctg_ppt()
   p.proj := ctg_ppt_proj
   p.inv := ctg_ppt_inv
   p.org := copy(L1)
   p.tgt := copy(L2)

   B := copy(L1)
   every (x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4) := get(B)
   B := copy(L2)
   every (x1p | y1p | x2p | y2p | x3p | y3p | x4p | y4p) := get(B)

   M := [
      [ x1, y1, 1., 0., 0., 0., -x1p * x1, -x1p * y1], 
      [ 0., 0., 0., x1, y1, 1., -y1p * x1, -y1p * y1], 
      [ x2, y2, 1., 0., 0., 0., -x2p * x2, -x2p * y2], 
      [ 0., 0., 0., x2, y2, 1., -y2p * x2, -y2p * y2], 
      [ x3, y3, 1., 0., 0., 0., -x3p * x3, -x3p * y3], 
      [ 0., 0., 0., x3, y3, 1., -y3p * x3, -y3p * y3], 
      [ x4, y4, 1., 0., 0., 0., -x4p * x4, -x4p * y4], 
      [ 0., 0., 0., x4, y4, 1., -y4p * x4, -y4p * y4] 
      ]
   I := list(8)
   B := copy(L2)

   lu_decomp(M, I) | fail		# if singular, fail
   lu_back_sub(M, I, B)
   every (p.h11 | p.h12 | p.h13 | p.h21 | p.h22 | p.h23 | p.h31 | p.h32) :=
      get(B)
   p.h33 := 1.0

   return p
end



#  ctg_ppt_proj(p, L) -- project using planar projective transformation

procedure ctg_ppt_proj(p, L)
   local a, i, x, y, d, h11, h12, h13, h21, h22, h23, h31, h32, h33

   h11 := p.h11
   h12 := p.h12
   h13 := p.h13
   h21 := p.h21
   h22 := p.h22
   h23 := p.h23
   h31 := p.h31
   h32 := p.h32
   h33 := p.h33
   a := list()

   every i := 1 to *L by 2 do {
      x := L[i]
      y := L[i+1]
      d := h31 * x + h32 * y + h33
      put(a, (h11 * x + h12 * y + h13) / d, (h21 * x + h22 * y + h23) / d)
      }

   return a
end



#  ctg_ppt_inv(p, L) -- invert planar projective transformation

procedure ctg_ppt_inv(p)
   return pptrans(p.tgt, p.org)
end



###############  Universal Transverse Mercator Projection  ###############



#  UTM conversion parameters

$define k0	0.9996		# central meridian scaling factor for UTM
$define M0	0.0		# M0 = 0 because y origin is at phi=0


record ctg_utm(		# UTM projection record
   proj,		# projection procedure
   inv,			# inversion procedure
   a,			# polar radius
   f,			# flattening
   e,			# eccentricity
   esq,			# eccentricity squared
   epsq,		# e prime squared 
   c0, c2, c4, c6, c8	# other conversion constants
   )



#  utm(a, f) -- define UTM projection

procedure utm(a, f)		#: define UTM projection
   local p, e, af

   p := ctg_utm()
   p.proj := ctg_utm_proj
   p.inv := ctg_utm_inv

   if /f then {
      af := ellipsoid(a) | fail
      a := af[1]
      f := af[2]
   }
   p.a := a			# p.a = equatorial radius
   p.f := f			# p.f = flattening
   p.esq := 2 * f - f ^ 2	# p.esq = eccentricity squared 
   p.epsq := p.esq / (1 - p.esq)
   p.e := sqrt(p.esq)		# p.e = eccentricity
   p.c0 := p.a * (1 - (p.e^2) / 4 - 3 * (p.e^4) / 64 - 5 * (p.e^6) / 256)
   p.c2 := p.a * (3 * (p.e^2) / 8 + 3 * (p.e^4) / 32 + 45 * (p.e^6) / 1024)
   p.c4 := p.a * (15 * (p.e^4) / 256 + 45 * (p.e^6) / 1024)
   p.c6 := p.a * (35 * (p.e^6) / 3072)
   return p
end



#  ctg_utm_proj(p, L) -- project using UTM projection  (Snyder, p61)

procedure ctg_utm_proj(p, L)
   local ulist, epsq, lat, lon, zone, phi, lambda, lamzero, cosphi
   local i, N, T, C, A, M, x, u, y

   ulist := list()
   epsq := p.epsq

   every i := 1 to *L by 2 do {
      lon := numeric(L[i])
      lat := numeric(L[i+1])
      zone := (185 + integer(lon)) / 6
      phi := dtor(lat)				# latitude in radians
      lambda := dtor(lon)			# longitude in radians
      lamzero := dtor(-183 + 6 * zone)		# central meridian of zone
      N := p.a / sqrt(1 - p.esq * sin(phi) ^ 2)		# (8-12)
      T := tan(phi) ^ 2					# (4-20)
      cosphi := cos(phi)
      C := epsq * cosphi ^ 2				# (8-13)
      A := (lambda - lamzero) * cosphi			# (8-15)
      M := p.c0*phi - p.c2*sin(2.*phi) + p.c4*sin(4.*phi) - p.c6*sin(6.*phi)
      x := k0 * N * (A + (1 - T + C) * A^3 / 6. +
         (5. - 18. * T + T^2 + 72. * C - 58. * epsq) * A^5 / 120.)
      u := A^2 / 2 + (5 - T + 9 * C + 4 * C^2) * A^4 / 24 +
         (61. - 58. * T + T^2 + 600. * C - 330. * epsq) * A^6 / 720.
      y := k0 * (M - M0 + N * tan(phi) * u)
      put(ulist, zone, x, y)
      }
   return ulist
end



#  ctg_utm_inv(p) -- invert UTM projection

procedure ctg_utm_inv(p)
   local q, e, e1

   q := copy(p)
   q.proj := ctg_iutm_proj
   q.inv := ctg_iutm_inv
   e := q.e
   e1 := (1 - sqrt(1 - e^2)) / (1 + sqrt(1 - e^2))
   q.c0 := q.a * (1 - e^2 / 4. - 3. * e^4 / 64. - 5. * e^6 / 256.)
   q.c2 := 3. * e1 / 2. - 27. * e1^3 / 32.
   q.c4 := 21. * e1^2 / 16. - 55. * e1^4 / 32.
   q.c6 := 151. * e1^3 / 96.
   q.c8 := 1097. * e1^4 / 512.
   return q
end



#  ctg_iutm_proj(p, L) -- project using inverse UTM projection  (Snyder, p63)

procedure ctg_iutm_proj(p, L)
   local a, esq, epsq
   local lllist, i, x, y, zone
   local lam0, mu, phi1, sin1, cos1, tan1, phi, lam, t1, t2, C1, T1, N1, R1, D

   a := p.a
   esq := p.esq
   epsq := p.epsq
   lllist := list()

   every i := 1 to *L by 3 do {
      zone := L[i]
      x := L[i + 1]
      y := L[i + 2]
      lam0 := dtor(-183 + 6 * zone)		# central meridian of zone
      mu := y / (k0 * p.c0)
      phi1 := mu + p.c2 * sin(2. * mu) + p.c4 * sin(4. * mu) +
         p.c6 * sin(6. * mu) + p.c8 * sin(8. * mu)
      sin1 := sin(phi1)
      cos1 := cos(phi1)
      tan1 := tan(phi1)
      t1 := 1 - esq * sin1^2
      t2 := sqrt(t1)
      C1 := epsq * cos1^2
      T1 := tan1^2
      N1 := a / t2
      R1 := a * (1 - esq) / (t1 * t2)
      D := x / (N1 * k0)
      phi := phi1 - (N1 * tan1 / R1) *
         (D^2 / 2. - (5. + 3.*T1 + 10.*C1 - 4.*C1*C1 - 9.*epsq) * D^4 / 24. + 
            (61. + 90.*T1 + 298.*C1 + 45.*T1*T1 - 252.*epsq - 3. * C1*C1) *
            D^6 / 720.)
      lam := lam0 + (D - (1 + 2 * T1 + C1) * D^3 / 6. +
         (5. - 2. * C1 + 28. * T1 - 3. * C1 * C1 + 
         8. * epsq + 24. * T1 * T1) * D^5 / 120.) / cos1
      put(lllist, rtod(lam), rtod(phi))
      }
   
   return lllist
end



#  ctg_iutm_inv(p, L) -- invert inverse UTM projection

procedure ctg_iutm_inv(p)
   return utm(p.a, p.f)
end



################## Composing projections #############################

record ctg_comp(		# composition of two projections
   proj,			# projection procedure (always ctg_comp_proj)
   inv,				# inverse (always ctg_comp_inv)
   projList			# list of projections in composition,
				# first is applied first, etc.
   )

# compose --	produce a projection that applies the LAST projection
#		in a[] first, etc.

procedure compose(a[])		#: define composite projection
   local q, r

   q := ctg_comp()
   q.proj := ctg_comp_proj
   q.inv := ctg_comp_inv
   q.projList := []
   every r := !a do
      push(q.projList, r)
   return q
end

procedure ctg_comp_proj(p, L)
   local r

   every r := !(p.projList) do
      L := project(r, L)
   return L
end

procedure ctg_comp_inv(p)
   local q, r

   q := ctg_comp()
   q.proj := ctg_comp_proj
   q.inv := ctg_comp_inv
   q.projList := []
   every r := !(p.projList) do
      push(q.projList, invp(r))
   return q
end

This page produced by UniDoc on 2021/04/15 @ 23:59:44.